Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn giải tin ra giao diem 2 dg thang 1,2 x=?;y=? (? là chỉ có k là ẩn) rồi thế vô 3 giai pt ra k
Cô hướng dẫn nhé!
d1, d2, d3 đồng quy
=> Giả sự M(x, y ) là điểm đồng quy
tọa độ điểm M là giao điểm của d1, d2
=> Tìm được điểm M
có được M(x, y) rồi em thay vào d3 để tìm k :)
Gọi A là giao điểm d1 và d2
Pt hoành độ giao điểm d1 và d2: \(x+3=-x+1\Rightarrow x=-1\)
\(\Rightarrow A\left(-1;2\right)\)
Để 3 đường thẳng đồng quy \(\Leftrightarrow\) d3 qua A
\(\Leftrightarrow2=\sqrt{2}.\left(-1\right)+\sqrt{2}+m\)
\(\Rightarrow m=2\)
a. Gọi \(A\left(x_0;y_o\right)\) là điểm cố định mà \(\Delta\)đi qua
Ta có phương trinh hoành độ giao điểm \(\left(m-3\right)x_o-\left(m-2\right)y_0+m-1=0\)
\(\Leftrightarrow mx_0-my_0+m-\left(3x_0-2y_0+1\right)=0\Leftrightarrow m\left(x_0-y_0+1\right)-\left(3x_0-2y_0+1\right)=0\)
Vì đẳng thức đúng với mọi m nên \(\hept{\begin{cases}x_0-y_0+1=0\\3x_0-2y_0-1=0\end{cases}\Rightarrow\hept{\begin{cases}x_0=3\\y_0=4\end{cases}\Rightarrow}A\left(3;4\right)}\)
Vậy \(\Delta\)luôn đi qua điểm \(A\left(3;4\right)\)cố định
b. Ta có \(\left(m-2\right)y=\left(m-3\right)x+m-1\)
Để \(\Delta\)song song với Ox thì \(\hept{\begin{cases}m-2\ne0\\m-3=0\end{cases}\Rightarrow m=3}\)
Để \(\Delta\)song song với Oy thì \(\hept{\begin{cases}m-2=0\\m-3\ne0\end{cases}\Rightarrow m=2}\)
Để \(\Delta\)song song với đt \(y=x\)\(\Rightarrow\hept{\begin{cases}m-2=1\\m-3=1\end{cases}\Rightarrow\hept{\begin{cases}m=3\\m=4\end{cases}\left(l\right)}}\)
Vậy không tồn tại m để \(\Delta\)song song với đt \(y=x\)
câu này khá khó mình ko biết làm có đúng ko nữa
để \(\left(d1\right)\perp\left(d2\right)\)
\(\Leftrightarrow\)\(\left(k-3\right).\left(2k+1\right)=-1\)
\(\Leftrightarrow2k^2+k-6k-3+1=0\)
\(\Leftrightarrow2k^2-5k-2=0\)
\(\Leftrightarrow k^2-\frac{5}{2}k-1=0\)
\(\Leftrightarrow\)\(k^2-2.k.\frac{5}{4}+\frac{25}{16}-\frac{25}{16}-1=0\)
\(\Leftrightarrow\left(k-\frac{5}{4}\right)^2-\frac{41}{16}=0\)
\(\Leftrightarrow\left(k-\frac{5}{4}-\frac{\sqrt{41}}{4}\right)\left(k-\frac{5}{4}+\frac{\sqrt{41}}{4}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}k-\frac{5}{4}-\frac{\sqrt{41}}{4}=0\\k-\frac{5}{4}+\frac{\sqrt{41}}{4}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}k=\frac{5+\sqrt{41}}{4}\\k=\frac{5-\sqrt{41}}{4}\end{cases}}\) ( Thỏa mãn \(k\ne3;k\ne\frac{-1}{2}\))
vậy \(k=\frac{5-\sqrt{41}}{4}\) ; \(k=\frac{5+\sqrt{41}}{4}\)
Bài toán hay dùng BĐT Vacs\(\sqrt{a^2-a+1\:}+\sqrt{b^2-b+1}+\sqrt{c^2-c+1}\ge a+b+c\)
Kết hợp giữa việc sử dụng phương pháp tiếp tuyến và tinh ý nhận ra bổ đề Vacs
Chú tth thử làm nhứ. Trong TKHĐ của t có sol rồi nha !!!!
x-y+5k=0 suy ra y=x+5k
(2k+3)x+k(y-1)=0 suy ra y=\(\frac{-\left(2k+3\right)x+k}{k}\)
(k+1)x-y+1=0 suy ra y=(k+1)x+1
3 đường thẳng đồng quy tại A(x0 ;y0).
suy ra: y0 = x0+5k = \(\frac{-\left(2k+3\right)x0+k}{k}\) = (k+1)x0+1
ta có x0+5k=(k+1)x0+1 suy ra x0=\(\frac{5k-1}{k}\) (1)
và x0+5k=\(\frac{-\left(2k+3\right)x0+k}{k}\) suy ra x0=\(\frac{k\left(1-5k\right)}{3\left(k+1\right)}\) (2)
Từ (1) và (2) suy ra \(\frac{5k-1}{k}\)=\(\frac{k\left(1-5k\right)}{3\left(k+1\right)}\) suy ra (5k-1)3(k+1)=k2(1-5k) tương đương 5k3+14k2+12k-3=0 tương đương k=0.2
thay vào 3 đường thẳng ban đầu. A(0;1)