K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2023

a: Khi m=1 thì y=(1-2)x+2*1-3

\(\Leftrightarrow y=-x-1\)

(d1): y=-x-1

loading...

b: Tọa độ A là nghiệm của hệ phương trình sau:

\(\left\{{}\begin{matrix}-x-1=x-5\\y=x-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2x=-4\\y=x-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2-5=-3\end{matrix}\right.\)

c: \(a_1\cdot a_2=1\cdot\left(-1\right)=-1\)

=>\(\left(d1\right)\perp\left(d2\right)\)

a: Tọa độ A là nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}-x-1=x-5\\y=x-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2x=-4\\y=x-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\y=2-5=-3\end{matrix}\right.\)

=>A(2;-3)

b: Vì \(a_1\cdot a_2=1\cdot\left(-1\right)=-1\)

nên (d1) vuông góc với (d2)

Gọi B,C lần lượt là giao điểm của (d1) với trục Oy, (d2) với trục Oy

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=-x-1=-0-1=-1\end{matrix}\right.\)

=>B(0;-1)

Tọa độ C là:

\(\left\{{}\begin{matrix}x=0\\y=x-5=-5\end{matrix}\right.\)

=>C(0;-5)

B(0;-1); C(0;-5); A(2;-3)

\(BC=\sqrt{\left(-5+1\right)^2+\left(0-0\right)^2}=4\)

\(BA=\sqrt{\left(2-0\right)^2+\left(-3+1\right)^2}=2\sqrt{2}\)

\(AC=\sqrt{\left(2-0\right)^2+\left(-3+5\right)^2}=2\sqrt{2}\)

Chu vi tam giác ABC là:

\(4+2\sqrt{2}+2\sqrt{2}=4\sqrt{2}+4\)

1 tháng 9 2023

khó thế

a: Tọa độ A là:

y=0 và -1/2x+4=0

=>x=8 và y=0

=>A(8;0)

Tọa độ B là;

y=0 và -x+4=0

=>x=4 và y=0

=>B(4;0)

Tọa độ C là;

1/2x+4=-x+4 và y=-x+4

=>x=0 và y=4

=>C(0;4)

b: A(8;0); B(4;0); C(0;4)

\(AB=\sqrt{\left(4-8\right)^2+\left(0-0\right)^2}=4\)

\(AC=\sqrt{\left(0-8\right)^2+\left(4-0\right)^2}=4\sqrt{5}\)

\(BC=\sqrt{4^2+4^2}=4\sqrt{2}\)

\(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{2}{\sqrt{5}}\)

=>\(sinBAC=\dfrac{1}{\sqrt{5}}\)

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC=\dfrac{1}{2}\cdot4\cdot4\sqrt{5}\cdot\dfrac{1}{\sqrt{5}}=8\)

\(C=4+4\sqrt{5}+4\sqrt{2}\)

6 tháng 7 2016

(d1): y = 1/2x + 2

và (d2): y = -x + 2

1. Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ Oxy.

(d1) là đường thẳng đi qua hai điểm (0; 2) và (-4; 0)

  (d2) là đường thẳng đi qua hai điểm (0; 2) và  (2;0)

2. Tính chu vi và diện tích của tam giác ABC

(d1) và (d2) cùng cắt nhau tại một điểm trên trục tung có tung độ bằng 2

Áp dụng định lý Pi ta go cho các tam giác AOC và BOC vuông ở O ta được:

\(AC=\sqrt{4^2+2^2}=\sqrt{20}=2\sqrt{5}\)

\(BC=\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\)

Chu vi tam giác ABC : AC + BC + AB= 2√5 + 2√2 + 6

≈ 13,30

Diện tích tam giác ABC

\(\frac{1}{2}.OC.AB=\frac{1}{2}.2.6=6CM^2\)

NHÉ THAK NHÌU

27 tháng 11 2016

b) Lập phương trình hoành độ giao điểm ta có;

2x - 1 = -x+2

-> 2x + x =2+1

-> 3x = 3

-> x = 1

Thay x=1 vào hàm số y = 2x - 1 ta được y= 2-1 = 1

Vậy tọa độ giao điểm M ( 1;1)

c) Thao đn TSLG có :

tanABO = \(\frac{1}{0,5}\)= 2

-> ​​ABO ( bạn thêm kí hiệu góc vào ) \(\approx\) 63độ 26phut

Gọi \(\alpha\)là góc tạo bởi hàm số y=2x-1 và trục 0x ta có \(\alpha\)= ABO ( bạn thêm kí hiệu góc vào ) ( đối đỉnh) =  63độ 26phut

a) Xét hàm số y=2x-1 ( x\(\in\)R)

Cho x=0 -> y=-1 -> A( 0;-1)

Cho y=0 -> x= 0.5 -> B ( 0.5 : 0)

Xét hàm số y= -x+2 ( x \(\in\)R)

Cho x=0 -> y=2 -> C (0;2)

Cho y =0-> x= 2 -> D( 2;0)

vẽ đồ thị

27 tháng 11 2016
98ty
đdd
đdd
                                                       
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
                                                        
25 tháng 11 2023

a: loading...

b: Phương trình hoành độ giao điểm là:

4x-2=-x+3

=>4x+x=3+2

=>5x=5

=>x=1

Thay x=1 vào y=-x+3, ta được:

\(y=-1+3=2\)

Vậy: M(1;2)

c: Gọi \(\alpha;\beta\) lần lượt là góc tạo bởi (d1),(d2) với trục Ox

(d1): y=4x-2

=>\(tan\alpha=4\)

=>\(\alpha=76^0\)

(d2): y=-x+3

=>\(tan\beta=-1\)

=>\(\beta=135^0\)

d: Thay y=6 vào (d1), ta được:

4x-2=6

=>4x=8

=>x=2

=>A(2;6)

Thay x=6/2=3 vào (d2), ta được:

\(y=-3+3=0\)

vậy: B(3;0)

Vì (d):y=ax+b đi qua A(2;6) và B(3;0) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+b=6\\3a+b=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2a+b-3a-b=6-0\\3a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=6\\b=-3a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=-6\\b=-3\cdot\left(-6\right)=18\end{matrix}\right.\)

Vậy: (d): y=-6x+18

e: A(2;6); B(3;0); M(1;2)

\(AM=\sqrt{\left(1-2\right)^2+\left(2-6\right)^2}=\sqrt{17}\)

\(BM=\sqrt{\left(1-3\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)

\(AB=\sqrt{\left(3-2\right)^2+\left(0-6\right)^2}=\sqrt{37}\)

Chu vi tam giác AMB là:

\(C_{AMB}=\sqrt{17}+2\sqrt{2}+\sqrt{37}\)

Xét ΔAMB có 

\(cosAMB=\dfrac{MA^2+MB^2-AB^2}{2\cdot MA\cdot MB}=\dfrac{17+8-37}{2\cdot2\sqrt{2}\cdot\sqrt{17}}=\dfrac{-3}{\sqrt{34}}\)

=>\(\widehat{AMB}\simeq121^0\) và \(sinAMB=\sqrt{1-\left(-\dfrac{3}{\sqrt{34}}\right)^2}=\dfrac{5}{\sqrt{34}}\)

Xét ΔAMB có

\(\dfrac{AB}{sinAMB}=\dfrac{AM}{sinABM}=\dfrac{BM}{sinBAM}\)

=>\(\dfrac{\sqrt{17}}{sinABM}=\dfrac{2\sqrt{2}}{sinBAM}=\sqrt{37}:\dfrac{5}{\sqrt{34}}\)

=>\(sinABM\simeq0,58;\widehat{BAM}\simeq0,4\)

=>\(\widehat{ABM}\simeq35^0;\widehat{BAM}\simeq24^0\)