K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

Lời giải:

Ta thấy:

\(MNP=(-5xy)(11xy^2)(\frac{7}{5}x^2y^3)\)

\(=-77x^4y^6=-77(x^2y^3)^2\)

\((x^2y^3)^2\geq 0\Rightarrow MNP=-77(x^2y^3)^2\leq 0(*)\)

Nếu $M,N,P$ cùng giá trị dương thì $M.N.P$ mang dấu dương (trái với $(*)$)

Do đó 3 biểu thức này không thể cùng mang giá trị dương.

a: A=-3/8x^2z*2/3xy^2z^2*4/5x^3y=-1/5x^6y^3z^3

b: Khi x=-1;y=-2;z=-3 thì -3/8x^2z=-3/8*(-1)^2*(-3)=9/8

2/3xy^2z^2=2/3*(-1)*(2*3)^2=-2/3*36=-24

4/5x^3y=4/5*(-1)^3*(-3)=12/5

A=-1/5*(-1)^6*(-2)^3*(-3)^3=-216/5

 

30 tháng 5 2023

a) \(\left(-\dfrac{3}{8}x^2z\right).\left(\dfrac{2}{3}xy^2z^2\right).\dfrac{4}{5}x^3y=-\dfrac{1}{5}x^6y^3z^3\)

b) Gía trị đơn thức :

\(-\dfrac{1}{5}.\left(-1\right)^6\left(-2\right)^3.3^3=-\dfrac{1}{5}.1.\left(8\right).27=\dfrac{216}{5}\)

30 tháng 5 2023

Bài tập `17`

`a,` ` @` Tớ nghĩ là tính tích ba đơn thức chứ nhỉ ?

\(-\dfrac{3}{8}x^2z.\dfrac{2}{3}xy^2z^2.\dfrac{4}{5}x^3y\\ =\left(-\dfrac{3}{8}.\dfrac{2}{3}.\dfrac{4}{5}\right)\left(x^2.x.x^3\right)\left(y^2.y\right)\left(z.z^2\right)\\ =-\dfrac{1}{5}x^6y^3z^3\)

`b,` Tại `x=-1 ; y=-2;z=-3`

Thì \(-\dfrac{3}{8}x^2z=-\dfrac{3}{8}.\left(-1\right)^2.\left(-3\right)=-\dfrac{3}{8}.1.\left(-3\right)=\dfrac{9}{8}\\ \dfrac{2}{3}xy^2z^2=\dfrac{2}{3}.\left(-1\right)\left(-2\right)^2\left(-3\right)^2=\dfrac{2}{3}.\left(-1\right).4.9=-24\\ \dfrac{4}{5}x^3y=\dfrac{4}{5}.\left(-1\right)^3.\left(-2\right)=\dfrac{4}{5}.\left(-1\right).\left(-2\right)=\dfrac{8}{5}\)

30 tháng 5 2023

\(-\dfrac{1}{5}x^6y^3z^3=-\dfrac{1}{5}\left(-1\right)^6.\left(-2\right)^3.\left(-3\right)^3=-\dfrac{1}{5}.1.\left(-8\right).\left(-27\right)=\dfrac{216}{5}\)

tớ bổ sung ... tớ quên ạa

1 tháng 8 2023

a, đều cùng có giá trị dương:
- Để các đơn thức có giá trị dương, ta cần xác định dấu của các biến x, y, z, t.
- Trong các đơn thức đã cho, chỉ có đơn thức thứ nhất (x^3y^2z) không có dấu trừ.
- Vậy, ta có thể xác định dấu của x, y, z, t là dương.

b, đều có giá trị âm thanh giống nhau:
- Để các đơn thức có giá trị âm thanh giống nhau, ta cần xác định dấu của các biến x, y, z, t.
- Trong các đơn thức đã cho, chỉ có đơn thức thứ ba (-3x^2yzt) có dấu trừ.
- Vậy, ta có thể xác định dấu của x, y, z, t là âm

a: D=-1/3x^4y^3

Hệ số: -1/3

Biến; x^4;y^3

b: khi x=1 và y=2 thì D=-1/3*1^4*2^3=-8/3

30 tháng 5 2023

`a, A= 1/18 x^2 y . (-9.7 x y^2)`

\(=\left[\dfrac{1}{18}.\left(-\dfrac{9}{7}\right)\right]\left(x^2.x\right)\left(y.y^2\right)\\ =-\dfrac{1}{14}x^3y^3\)

`b,` Tại  `x=2 ;y=-1`

Ta có : `A=-1/14 x^3 y^3 =-1/14 . 2^3 . (-1)^3= -1/14 . 8 . (-1) = 4/7`

a: F=9/25x^2y^4*20/27x^3y=4/15x^5y^5

Bậc: 10

b: y=-x/3 và x+y=2

=>x+y=2 và -1/3x-y=0

=>x=3 và y=-1

Khi x=3 và y=-1 thì F=4/15*(-3)^5=-324/5

24 tháng 6 2018

a) x(2x+1)-x2(x+2)+(x3-x+3)

=2x2+ x- x3-2x2+ x3-x+3

=3

b) x(3x2 -x +5)- ( 2x3 +3x- 16)-x(x2- x+2)

=3x3 - x2 + 5x- 2x3 -3x +16- x3+x2-2x

=16