Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB=\(\sqrt{\left[4-\left(-3\right)\right]^2+\left(-1-2\right)^2}=\sqrt{58}\)
\(AC=\sqrt{\left(4-1\right)^2+\left(-1-6\right)^2}=\sqrt{58}\)
=>tam giác ABC cân tại A
\(BC=\sqrt{\left(-3-1\right)^2+\left(2-6\right)^2}=4\sqrt{2}\)
=>BC/2=\(2\sqrt{2}\)
Suy ra: \(\sin\frac{1}{2}BAC=\frac{\frac{BC}{2}}{AC}=\frac{2\sqrt{2}}{\sqrt{58}}\Rightarrow\frac{1}{2}\text{góc BAC}\approx22^0\Rightarrow\text{góc BAC}\approx11^0\)
\(AB=\sqrt{\left(-3-4\right)^2+\left(2+1\right)^2}=\sqrt{58}\)
\(AC=\sqrt{\left(1-4\right)^2+\left(6+1\right)^2}=\sqrt{58}\)
\(BC=\sqrt{\left(1+3\right)^2+\left(6-2\right)^2}=4\sqrt{2}\)
\(\cos BAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{58+58-32}{2\cdot58}=\dfrac{84}{116}\)
nên \(\widehat{BAC}\simeq44^0\)
Ta có: \(\overrightarrow {AB} = \left( { - 1;3} \right);\overrightarrow {AC} = \left( {2; - 1} \right)\)
Vậy\(\cos \left( {AB,AC} \right) = \left| {\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right)} \right| = \frac{{\left| { - 1.2 + 3.\left( { - 1} \right)} \right|}}{{\sqrt {{{\left( { - 1} \right)}^2} + {3^2}} .\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} }} = \frac{1}{{\sqrt 2 }} \Rightarrow \widehat {BAC} = {45^o}\)
a: Phương trình tổng quát là:
3(x-1)+1(y+3)=0
=>3x-3+y+3=0
=>3x+y=0
b: vecto AB=(-1;4)
Phương trình tham số của AB là:
\(\left\{{}\begin{matrix}x=1-t\\y=-3+4t\end{matrix}\right.\)
c: \(d\left(B;d\right)=\dfrac{\left|0\cdot3+1\cdot1\right|}{\sqrt{3^2+1^2}}=\dfrac{1}{\sqrt{10}}\)
12
Vì phương trình đường thẳng // với đường d1 : ax + by + c = 0
=> d2 : ax + by + c' = 0 ( c' khác 0 )
Cách 1 đoạn là h và chọn 1 điểm A ( x ; y ) thuộc đường ax + by + c = 0
Ta dùng công thức :
. . . . . . . . . . . | ax + by + c' |
d [ d1 ; d2 ] = ▬▬▬▬▬▬▬
. . . . . . . . . . . . . √(a² + b²)
Ta tìm c' --> Hết bài
tick cho mk nha