Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) y=(m-1)x+m+3 (d1) (a=m-1;b=m+3)
y=-2x+1 (d2) (a' =-2;b' =1)
vì hàm số (d1) song song với hàm số (d2) nên
\(\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Leftrightarrow\hept{\begin{cases}m-1=-2\\m+3\ne1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=-1\\m\ne-2\end{cases}}\)
vậy với m= -1 thì hàm số (d1) song song với hàm số (d2)
b) vì hàm số (d1) đi qua điểm (1;-4) nên
x=1 ; y= -4
thay vào (d1) ta có
-4=m-1+m+3 (mình làm tắt ko nhân với 1 nha)
-4=2m+2
-2=2m
m=-1
3/ \(\hept{\begin{cases}mx+y=3m\\x+my=2m+1\end{cases}}\)
Để PT trên có nghiệm duy nhất
\(\frac{m}{1}\ne\frac{1}{m}\Rightarrow m^2\ne1\Rightarrow m\ne1\)
\(\hept{\begin{cases}mx+y=3m\\x+my=2m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m^2x+my=3m^2\\x+my=2m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m^2x+my=3m^2\\m^2x-x=3m^2-2m-1\left(#\right)\end{cases}}\)
Từ (#) \(m^2x-x=3m^2-2m-1\)
\(\Leftrightarrow x\left(m^2-1\right)=3m^2-2m-1\)
\(\Rightarrow x=\frac{3m^2-2m-1}{m^2-1}=\frac{\left(3m+1\right)\left(m-1\right)}{\left(m+1\right)\left(m-1\right)}=\frac{3m+1}{m+1}\)
Có \(mx+y=3m\Leftrightarrow y=3m-mx=3m-\frac{m\left(3m+1\right)}{m+1}=\frac{3m^2+3m-3m^2-m}{m+1}=\frac{2m}{m+1}\)
=> Vậy PT trên có 1 nghiệm \(\left(x;y\right)=\left(\frac{3m+1}{m+1};\frac{2m}{m+1}\right)\)
Và x + y =1
\(\Rightarrow\frac{3m+1}{m+1}+\frac{2m}{m+1}=1\)
\(\Leftrightarrow\frac{5m+1}{m+1}=1\)
\(\Leftrightarrow\frac{5m+1}{m+1}-1=0\)
\(\Leftrightarrow\frac{5m+1-m-1}{m+1}=0\)
\(\Leftrightarrow\frac{4m}{m+1}=0\)
\(\Rightarrow4m=0\Rightarrow m=0\)
Mik không giỏi dạng này nên có j sai ib ạ >: