K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 2 2021

1. Gọi d' là đường thẳng qua A và vuông góc d

\(\Rightarrow\) d' nhận (1;3) là 1 vtpt

Phương trình d':

\(1\left(x+2\right)+3\left(y-3\right)=0\Leftrightarrow x+3y-4=0\)

H là giao điểm d và d' nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}3x-y+4=0\\x+3y-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{5}\\y=\dfrac{8}{5}\end{matrix}\right.\)

\(\Rightarrow H\left(-\dfrac{4}{5};\dfrac{8}{5}\right)\)

2.

Do A' đối xứng A qua d nên H là trung điểm AA'

\(\Rightarrow\left\{{}\begin{matrix}x_{A'}=2x_H-x_A=\dfrac{2}{5}\\y_{A'}=2y_H-y_A=\dfrac{1}{5}\end{matrix}\right.\)

\(\Rightarrow A'\left(\dfrac{2}{5};\dfrac{1}{5}\right)\)

NV
24 tháng 2 2021

3.

Gọi B là giao điểm d và \(\Delta\) thì tọa độ B thỏa mãn:

\(\left\{{}\begin{matrix}3x-y+4=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow B\left(-\dfrac{3}{7};\dfrac{19}{7}\right)\)

Lấy điểm \(C\left(0;4\right)\) thuộc d

Phương trình đường thẳng \(d_1\) qua C và vuông góc \(\Delta\) có dạng:

\(2\left(x-0\right)-\left(y-4\right)=0\Leftrightarrow2x-y+4=0\)

Gọi D là giao điểm \(\Delta\) và \(d_1\Rightarrow\left\{{}\begin{matrix}x+2y-5=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow D\left(-\dfrac{3}{5};\dfrac{14}{5}\right)\)

Gọi D' là điểm đối xứng C qua \(\Delta\Rightarrow\) D là trung điểm CD'

\(\Rightarrow\left\{{}\begin{matrix}x_{D'}=2x_D-x_C=-\dfrac{6}{5}\\y_{D'}=2y_D-y_C=\dfrac{8}{5}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BD'}=\left(-\dfrac{27}{35};-\dfrac{39}{35}\right)=-\dfrac{3}{35}\left(9;13\right)\)

Phương trình đường thẳng đối xứng d qua denta (nhận \(\left(9;13\right)\) là 1 vtcp và đi qua D':

\(\left\{{}\begin{matrix}x=-\dfrac{6}{5}+9t\\y=\dfrac{8}{5}+13t\end{matrix}\right.\)

8 tháng 4 2020

trl ; bạn kia đúng r

-

_

----------------

NV
29 tháng 1

Đề kiểu gì mà cho điểm A nằm ngay trên đường thẳng d như vậy nhỉ?

Theo BĐT tam giác ta có:

\(MA+MB\ge AB\)

Dấu "=" xảy ra khi M, A, B thẳng hàng, hay M là giao điểm của AB và d

Nhưng do A nằm trên d nên giao điểm của AB và d chính là A

Vậy M trùng A, hay M có tọa độ \(M\left(3;4\right)\)

//Ko cần tính toán bất kì 1 bước nào hết, chỉ cần lý luận là có kết quả. Chắc người ra đề ko để ý đến chuyện điểm A bất ngờ nằm trên d.

Gọi \(M\left(m;2m-3\right)\)

C1:

Khi đó \(\overrightarrow{MA}=\left(-m;-2m\right)\) và \(\overrightarrow{BM}=\left(m-1;2m-6\right)\)

Ta có \(AM+MB=\left|\overrightarrow{MA}\right|+\left|\overrightarrow{BM}\right|\)\(\ge\left|\overrightarrow{MA}+\overrightarrow{BM}\right|\)\(=\sqrt{\left(-m+m-1\right)^2+\left(-2m+2m-6\right)^2}\)\(=\sqrt{37}\)

Đẳng thức xảy ra\(\Leftrightarrow m=0\)

Khi đó, \(M\left(0;-3\right)\)

C2:

Áp dụng BĐT tam giác mở rộng, ta có

 \(AM+MB\ge AB=\sqrt{37}\)

Giải ra cũng tìm được \(M\left(0;-3\right)\) thoả mãn

A,B cùng phía so với d.

Gọi A' là điểm đối xứng của A qua d

MA+MB=MA'+MB>=A'B

Dấu = xảy ra khi A',M,B thẳng hàng

=>M là giao của A'B với d

Gọi d' là đường đi qua A và vuông góc d

d: 2x-y-3=0

=>d': x+2y+c=0

Thay x=0 và y=-3 vào (d'),ta được:

0+2*(-3)+c=0

=>c=6

=>d': x+2y+6=0

Gọi H là giao của d' và d

Tọa độ H là:

x+2y=-6 và 2x-y=3

=>x=0 và y=-3

H là trung điểm của AA' nên ta có:

0+x=0 và y-3=-6

=>x=0 và y=-3

=>A'(0;-3)

mà B(1;3) nên A'B có VTPT là (-6;1)

Phương trình A'B là:

-6(x-1)+1(y-3)=0

=>-6x+6+y-3=0

=>-6x+y+3=0

Tọa độ M là:

-6x+y=-3 và 2x-y=3

=>x=0 và y=-3