K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

. . A B C D E F I K O x

a) Dễ cm: \(\Delta AEB~\Delta ACE\left(g.g\right)\)

b) cm: tứ giác OEAI và AEOF nt

Dễ thấy: \(\widehat{AEO}=\widehat{AIO}=90^0\)

=> tứ giác OEAI nt đường tròn đường kính OA (1)

Lại có: \(\widehat{AEO}=\widehat{AFO}=90^0\)

=> tứ giác AEOF nt đường tròn đường lính OA (2)

Từ (1)(2) =>đpcm

+) CM: ED//AC

Có: \(\widehat{xED}=\widehat{EFD}\left(=\frac{1}{2}sđcungED\right)\)

Mà 5 điểm A,E,O,I,F cùng thuộc 1 đường tròn

=> \(\widehat{EFD}=\widehat{EAI}\left(=\frac{1}{2}sđEI\right)\)

=>\(\widehat{xED}=\widehat{EAI}\)

=> DE//AC

p/s: hình ảnh chỉ mang t/c minh họa

6 tháng 10 2019

A E X B C K O I D F

Dễ chứng minh \(\Delta AEB\Delta ACE\left(g.g\right)\)

b ) Cm tứ giác \(OEAI\) và \(AEOF\) nt

Dễ thấy : \(\widehat{AEO}=\widehat{AIO}=90^o\)

\(\Rightarrow\) tứ giác OEAI nt đường tròn đường kính OA (1)

Lại có : \(\widehat{AEO}=\widehat{AFO}=90^o\)

\(\Rightarrow\) tứ giác AEOF nt đường tròn đường kính OA (2)

Từ (1) và (2) \(\Rightarrow\) đpcm

+ ) CM : ED//AC

Có : \(\widehat{xED}=\widehat{EFD}\left(=\frac{1}{2}sđcungED\right)\)

Mà 5 diểm A , E, O , I , F cùng thuộc 1 đường tròn 

\(\Rightarrow\widehat{EFD}=\widehat{EAI}\left(=\frac{1}{2}sđEI\right)\)

\(\Rightarrow\widehat{xED}=\widehat{EAI}\)

\(\Rightarrow\) DE//AC

Chúc bạn học tốt !!!

14 tháng 4 2020

gọi Ex là tia đối của tiếp tuyến EA

Ta có : \(\widehat{xED}=\frac{1}{2}sđ\widebat{ED}\)\(\widehat{EFD}=\frac{1}{2}sđ\widebat{ED}\)\(\Rightarrow\widehat{xED}=\widehat{EFD}\)( 1 )

Dễ thấy tứ giác AFOE nội tiếp

I là trung điểm của BC nên OI \(\perp\)BC \(\Rightarrow\)tứ giác AIOE nội tiếp

\(\Rightarrow\)5 điểm A,F,I,O,E cùng thuộc 1 đường tròn

\(\Rightarrow\)tứ giác AFIE nội tiếp \(\Rightarrow\)\(\widehat{EAI}=\widehat{EFI}\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra : \(\widehat{xED}=\widehat{EAI}\Rightarrow ED//AC\)

Gọi N là giao điểm của AO và EF

Dễ chứng minh AN \(\perp\)EF

\(\DeltaẠNH~\Delta AIO\left(g.g\right)\Rightarrow\frac{AN}{AH}=\frac{AI}{AO}\Rightarrow AI.AH=AN.AO\)( 3 )

Ta có : \(AE^2=AN.AO\)( 4 )

Xét \(\Delta AEB\)và \(\Delta ACE\)có :

\(\widehat{EAC}\)( chung ) ; \(\widehat{AEB}=\widehat{ACE}=\frac{1}{2}sđ\widebat{EB}\)

\(\Rightarrow\Delta AEB~\Delta ACE\left(g.g\right)\)

\(\Rightarrow\frac{AE}{AB}=\frac{AC}{AE}\Rightarrow AE^2=AB.AC\)( 5 )

Từ ( 3 ) , ( 4 ) và ( 5 ) suy ra : AH.AI = AB.AC

14 tháng 4 2020

đề bạn cho thiếu nhé. đoạn cuối AH. AI = AB . AC với H là giao điểm của AC và EF

17 tháng 3 2016

2 tam giác HIE và HFA đồng dạng do có góc tại đỉnh H bằng nhau và góc HIE = góc FA (cùng chắn cung A của Q) => HI / HF = HE / HA => HI*HA = HE*HF ♦ 
2 ∆ HEB và HCF đồng dạng do có góc tại đỉnh H bằng nhau và góc HEB = góc HCF (cùng chắn cung BF của O) => HE / HC = HB / HF => HB*HC = HE*HF ♥ 
(Nếu bạn đã học phương tích của điểm đối với đường tròn thì có ngay ♦ và ♥ không cần cm vì ♦ chính là pt của H đối với Q còn ♥ là pt của H đối với O) 
♦, ♥ => HI*HA = HB*HC => HI*(AI - HI) = (x - HI)(x + HI) => HI*AI = x² 
=> HI = x² / AI = hằng số (A, I cố định nên AI không đổi) 
=> H cố định. 
Dễ thấy OIHK nội tiếp đường tròn (P) => đường tròn ngoại tiếp ∆ IOK chính là (P). Tâm đường tròn (P) dĩ nhiên nằm trên trung trực k của HI mà trung trực này cố định do H, I cố định. Vậy tâm đường tròn ngoại tiếp tam giác OIK luôn thuộc k cố định

17 tháng 3 2016

có người làm rồi kìa

a: Xét tứ giác ODAE có

góc ODA+góc OEA=180 độ

=>ODAE là tứ giác nội tiếp

b: \(AE=\sqrt{\left(3R\right)^2-R^2}=2\sqrt{2}\cdot R\)

\(OI=\dfrac{OE^2}{OA}=\dfrac{R^2}{3R}=\dfrac{R}{3}\)

c: Xét ΔDIK vuông tại I và ΔDHE vuông tại H có

góc IDK chung

=>ΔDIK đồng dạng vơi ΔDHE

=>DI/DH=DK/DE

=>DH*DK=DI*DE=2*IE^2

b: Xet ΔAEH và ΔACE có

góc AEH=góc ACE

góc EAH chung

=>ΔAEH đòng dạng vói ΔACE
=>AE^2=AH*AC

Xét ΔAEB và ΔACE có

góc AEB=góc ACE

góc EAB chung

=>ΔAEB đồng dạng với ΔACE
=>AE^2=AB*AC

 giups minh cau 1d, 2c , cam on nhieu1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của...
Đọc tiếp

 giups minh cau 1d, 2c , cam on nhieu

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

0
Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc vớiGọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại KXác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo RBài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ...
Đọc tiếp

Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc với
Gọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại K
Xác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo R
Bài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ tiếp tuyến MA,MB với đường tròn. Hạ OH vuông góc với d tại H.Nối Ab cắt OM tại I,OH tại K.Tia OM cắt đường tròn (O;R) tại E
Cm: E là tâm đường tròn nội tiếp tam giác MAB
Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK có diên tích lớn nhất
Bài 3 :cho 3 điểm a,b,c cố định nằm trên đường thẳng d(b nằm giữa a và c) .Vẽ đường tròn (0) cố định luôn đi qua B và C (0 là không nằm trên đường thẳng D ).Kẻ AM,AN là các tiếp tuyến với (0) tại M ,N .gọi I là trung điểm của BC,OA cắt MN tại H cắt (0) tại P và Q ( P nằm giữa A và O).BC cắt MN tại K
a.CM: O,M,N,I cùng nằm trên 1 đường tròn
b.CM điểm K cố định
c.Gọi D là trung điểm của HQ.Từ H kẻ đường thẳng vuông góc MD cắt MP tại E
d.Cm: P là trung điểm của ME
Bài 4:Cho đường tròn (O;R) đường kính CD=2R. M là 1 điểm thay đổi trên OC . Vẽ đường tròn (O') đường kính MD. Gọi I là trung điểm của MC,đường thẳng qua I vuông góc với CD cắt (O) tại E,F. đường thẳng ED cắt (O') tại P
a.Cm 3 điểm P,M,F thẳng hàng
b.Cm IP là tiếp tuyến của đường tròn (O;R)
c.Tìm vị trí của M trên OC để diện tích tam giác IPO lớn nhất

1

Bài 4:

a: 

Xét (O) có

ΔCED nội tiếp

CD là đường kính

=>ΔCED vuông tại E

ΔOEF cân tại O

mà OI là đường cao

nên I là trung điểm của EF

Xét tứ giác CEMF có

I là trung điểm chung của CM và EF

CM vuông góc EF

=>CEMF là hình thoi

=>CE//MF

=<MF vuông góc ED(1)

Xét (O') có

ΔMPD nội tiêp

MD là đường kính

=>ΔMPD vuông tại P

=>MP vuông góc ED(2)

Từ (1), (2) suy ra F,M,P thẳng hàng

b: góc IPO'=góc IPM+góc O'PM

=góc IEM+góc O'MP

=góc IEM+góc FMI=90 độ

=>IP là tiếp tuyến của (O')

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:a) AP là phân giác của góc BAQb) CP và BR song song với nhau2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax...
Đọc tiếp

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau

2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA

3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.

4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!

0