K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2(m-1)x+3=2m-5

=>x(2m-2)=2m-5-3=2m-8

a: (1) là phương trình bậc nhất một ẩn thì m-1<>0

=>m<>1

b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0

=>m=1

c: Để (1) có nghiệm duy nhất thì m-1<>0

=>m<>1

d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0

=>Ko có m thỏa mãn

e: 2x+5=3(x+2)-1

=>3x+6-1=2x+5

=>x=0

Khi x=0 thì (1) sẽ là 2m-8=0

=>m=4

23 tháng 6 2018

b1           \(\frac{x+a}{x+1}+\frac{x-2}{x}=2\)

ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)

\(\Leftrightarrow x\left(x+a\right)+\left(x-2\right)\left(x+1\right)=2x\left(x+1\right)\)

\(\Leftrightarrow x^2+ax+x^2-x-2=2x^2+2x\)

\(\Leftrightarrow ax-3x=2\)

\(\Leftrightarrow\left(a-3\right)x=2\)

để pt vô nghiệm  thì a-3=0 <=>a=3 thì pt vô nghiệm

2,\(4x-k+4=kx+k\)

\(\Leftrightarrow4x-kx=2k-4\)

\(\Leftrightarrow\left(4-k\right)x=2k-4\)

để pt có nghiệm duy nhất thì 4-k khác 0 <=> k khác 4 thì pt có nghiệm duy nhất là\(\frac{2k-4}{4-k}\)

pt vô nghiệm thì 4-k=0 <=.>k=4 

NV
23 tháng 1 2021

\(x^2\left(x+2a\right)-\left(a+1\right)^2\left(x+2a\right)=0\)

\(\Leftrightarrow\left(x+2a\right)\left[x^2-\left(a+1\right)^2\right]=0\)

\(\Leftrightarrow\left(x+2a\right)\left(x+a+1\right)\left(x-a-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2a\\x=-a-1\\x=a+1\end{matrix}\right.\) 

Pt đã cho luôn có 3 nghiệm (như trên) với mọi a

\(\left\{{}\begin{matrix}-a-1-\left(-2a\right)=a-1< 0\\\left(-a-1\right)-\left(a+1\right)=-2\left(a+1\right)< 0\\\end{matrix}\right.\)

\(\Rightarrow x=-a-1\) là nghiệm nhỏ nhất

8 tháng 3 2016

ad k duyệt bài

\(\Leftrightarrow a^2x-3a^2-4a+2+5a-x=0\)

\(\Leftrightarrow x\left(a^2-1\right)-3a^2+a+2=0\)

\(\Leftrightarrow x\left(a-1\right)\left(a+1\right)=\left(a-1\right)\left(3a+2\right)\)

Để pt vô nghiệm thì a+1=0

hay a=-1