Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^x=2^{3\left(y+1\right)}\Rightarrow x=3y+3\)
\(3^{2y}\Rightarrow3^{x-9}\Rightarrow2y=x-9\Rightarrow x=2y+9\)
\(\Rightarrow3y+3=2y+9\Rightarrow y=6\Rightarrow x=21\Rightarrow x+y=27\)
Ta có:\(2^x=8^{y+1}\Rightarrow2^x=2^{3\left(y+1\right)}\Rightarrow2^x=2^{3y+3}\Rightarrow x=3y+3\)
\(\Rightarrow9^y=3^{x-9}\Rightarrow3^{2y}=3^{3y+3-9}\Rightarrow3^{2y}=3^{3y-6}\Rightarrow2y=3y-6\)
\(\Rightarrow2y-3y=-6\Rightarrow-y=-6\Rightarrow y=6\)
\(\Rightarrow x=6\cdot3+3=21\)
\(\Rightarrow x+y=21+6=27\)
\(2x=8^{\left(y+1\right)}=2^{3\left(y+1\right)}\Rightarrow x=3y+3\) ( 1 )
\(9y=3^{2y}=3^{x-9}\Rightarrow2y=x-9\) ( 2 )
\(x+2y=3y+3+x-9\)
\(y=6\)
\(x=3.6+3=21\)
\(\Rightarrow x+y=27\)
Nếu có j thì nói nha ( giúp thì nói t giải cho )
\(\dfrac{x-2}{2}=\dfrac{y-4}{3}=\dfrac{z-8}{5}\)
\(\Rightarrow\dfrac{x-2}{2}+2=\dfrac{y-4}{3}+2=\dfrac{z-8}{5}+2\)
\(\Rightarrow\dfrac{x+2}{2}=\dfrac{y+2}{3}=\dfrac{z+2}{5}\)
\(\Rightarrow\left(\dfrac{x+2}{2}\right)^2=\left(\dfrac{y+2}{3}\right)^2=\left(\dfrac{z+2}{5}\right)^2\)
\(\Rightarrow\dfrac{\left(x+2\right)^2}{4}=\dfrac{\left(y+2\right)^2}{9}=\dfrac{\left(z+2\right)^2}{25}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{\left(x+2\right)^2}{4}=\dfrac{\left(y+2\right)^2}{9}=\dfrac{\left(z+2\right)^2}{25}=\dfrac{3.\left(y+2\right)^2}{27}\dfrac{\left(x+2\right)^2+3\left(y+2\right)^2-\left(z+2\right)^2}{4+27-25}=\dfrac{24}{6}=4\)\(\Rightarrow\left\{{}\begin{matrix}\left(x+2\right)^2=16\\\left(y+2\right)^2=36\\\left(z+2\right)^2=100\end{matrix}\right.\)
Bạn chia trường hợp rồi tìm x,y,z nhé
a: \(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{9}=\dfrac{11}{18}\)
hay \(x=\dfrac{11}{18}:\dfrac{1}{4}=\dfrac{11}{18}\cdot4=\dfrac{44}{18}=\dfrac{22}{9}\)
d: =>x+1;x-2 khác dấu
Trường hợp 1: \(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Leftrightarrow-1< x< 2\)
Trường hợp 2: \(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Leftrightarrow2< x< -1\left(loại\right)\)
e: =>x-2>0 hoặc x+2/3<0
=>x>2 hoặc x<-2/3
Đặt:
\(\frac{x}{3}=\frac{y}{2}=k\)
\(\Rightarrow x=k.3\)
\(\Rightarrow y=k.2\)
Thế vào \(6xy=1\), ta có:
\(6.\left(k.3\right).\left(k.2\right)=1\)
\(6.k^2.6=1\)
\(6.k^2=\frac{1}{6}\)
\(k^2=\frac{1}{36}\)
\(\Rightarrow k=\frac{1}{6}\) hoặc \(-\frac{1}{6}\)
Rồi giờ tìm x ; y bạn từ làm nhá
\(\frac{x}{3}=\frac{y}{2}\)
=> \(\frac{x^2}{3^2}=\frac{y^2}{2^2}=\frac{xy}{3.2}\)
=> \(\frac{x^2}{9}=\frac{y^2}{4}=\frac{6xy}{36}=\frac{1}{36}\)
=> x2 = 1.9 : 36 = \(\frac{1}{4}\) => \(x=\frac{1}{2}\) hoặc \(x=-\frac{1}{2}\)
Ta có: 2x = 8y+1 => 2x = (23)y+1 => 2x = 23y+3 => x=3y+3
9y = 3x-9 => (32)y = 3x-9 => 32y = 3x-9 => 2y = x-9
Do x=3y+3 => 2y = 3y+3-9 => 2y=3y-6 => y=6
=> x = 3.6+3 = 18+3=21
=>x+y=21+6=27
Ta có :
\(2^x=8^{y+1}\Rightarrow2^x=\left(2^3\right)^{y+1}\Rightarrow2^x=2^{3y+3}\Rightarrow x=3y+3\)
\(9^y=3^{x-9}\Rightarrow\left(3^2\right)^y=3^{x-9}\Rightarrow3^{2y}=3^{x-9}\Rightarrow2y=x-9\)
Do : \(3y+3\Rightarrow2y=3y+3-9\Rightarrow2y=3y-6\Rightarrow y=6\)
\(\Rightarrow3.6+3=18+3=21\)
\(\Rightarrow x+y=21+6=27\)
Ta có:
\(2^x=8^{y+1}\Rightarrow2^x=2^{3\left(y+1\right)}\Rightarrow x=3\left(y+1\right)\) (1)
\(9^y=3^{x-9}\Rightarrow3^{2y}=3^{x-9}\Rightarrow2y=x-9\) (2)
Thay (1) vào (2) ta có:
\(2y=3y+3-9\\ 2y=3y-6\\ 2y-3y=-6\\ -y=6\\ \Rightarrow y=6\)
Thay \(y=6\) vào \(2y=x-9\), ta có:
\(26=x-9\\ \Rightarrow x=26+9\\ \Rightarrow x=35\)
\(\Rightarrow x+y=6+35=41\)
Vậy: \(x+y=41\)
Mình nhầm, xin lỗi
Chỗ mà thay y=6 vào 2y = x-9 á, đổi 26 = x - 9 thành: 2.6 = x - 9 nha! Phần còn lại mình nghĩ bạn tự tính cũng được :)