Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=8x^3+27y^3+4x^2+9y^2+5\)
\(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)+4x^2+9y^2+5\)
\(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)+4x^2+9y^2+5\)
\(=4x^2-6xy+9y^2+4x^2+9y^2+5\)
Áp dụng BĐT AM-GM có:
\(1\ge2.\sqrt{6xy}\)
\(\Leftrightarrow xy\le\frac{1}{24}\)
Dấu " = " xảy ra <=> 2x=3y <=> x=0,25 y=1/6
Áp dụng BĐT Cauchy-schwarz ta có:
\(M\ge\frac{2.\left(2x+3y\right)^2}{2}-6xy+5\ge\frac{2}{2}-\frac{6.1}{24}+5=6.25\)
Dấu " = " xảy ra <=> 2x=3y <=> x=0,25 y=1/6
KL:.....................................................................
bài này ta có thể giải theo 2 cách
ta có A = \(\frac{x^2-2x+2011}{x^2}\)
= \(\frac{x^2}{x^2}\)- \(\frac{2x}{x^2}\)+ \(\frac{2011}{x^2}\)
= 1 - \(\frac{2}{x}\)+ \(\frac{2011}{x^2}\)
đặt \(\frac{1}{x}\)= y ta có
A= 1- 2y + 2011y^2
cách 1 :
A = 2011y^2 - 2y + 1
= 2011 ( y^2 - \(\frac{2}{2011}y\)+ \(\frac{1}{2011}\))
= 2011( y^2 - 2.y.\(\frac{1}{2011}\)+ \(\frac{1}{2011^2}\)- \(\frac{1}{2011^2}\) + \(\frac{1}{2011}\))
= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)
= 2011\(\left(y-\frac{1}{2011}\right)^2\)+ \(\frac{2010}{2011}\)
vì ( y - \(\frac{1}{2011}\)) 2>=0
=> 2011\(\left(y-\frac{1}{2011}\right)^2\)+ \(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)
hay A >=\(\frac{2010}{2011}\)
cách 2
A = 2011y^2 - 2y + 1
= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\). \(\frac{1}{\sqrt{2011}}\)+ \(\frac{1}{2011}\)+ \(\frac{2010}{2011}\)
= \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)+ \(\frac{2010}{2011}\)
vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0
nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)+ \(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)
hay A >= \(\frac{2010}{2011}\)
B = x2 + 9y2 + 2011
= x2 + (3y)2 + 2011
= x2 + (5 - 2x)2 + 2011 (do 2x + 3y = 5)
= x2 + 4x2 - 20x + 25 + 2011
= 5x2 - 20x + 2036
= 5x2 - 20x + 20 + 2016
= 5(x2 - 4x + 4) + 2016
= 5(x - 2)2 + 2016 \(\ge2016\)
=> Min B = 2016 khi x - 2 = 0 <=> x = 2
khi đó y = \(\dfrac{1}{3}\)
Vậy Bmin = 2016 khi x = 2 ; \(y=\dfrac{1}{3}\)