K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2021

\(2sin\left(x+y\right)=sinx+siny\)

\(\Leftrightarrow2.2.sin\dfrac{x+y}{2}.cos\dfrac{x+y}{2}=2.sin\dfrac{x+y}{2}.cos\dfrac{x-y}{2}\)

\(\Leftrightarrow2cos\dfrac{x+y}{2}=cos\dfrac{x-y}{2}\)

\(\Leftrightarrow2\left(cos\dfrac{x}{2}.cos\dfrac{y}{2}-sin\dfrac{x}{2}.sin\dfrac{y}{2}\right)=cos\dfrac{x}{2}.cos\dfrac{y}{2}+sin\dfrac{x}{2}.sin\dfrac{y}{2}\)

\(\Leftrightarrow cos\dfrac{x}{2}.cos\dfrac{y}{2}=3.sin\dfrac{x}{2}.sin\dfrac{y}{2}\)

\(\Leftrightarrow\left(sin\dfrac{x}{2}:cos\dfrac{x}{2}\right).\left(sin\dfrac{y}{2}:cos\dfrac{y}{2}\right)=\dfrac{1}{3}\)

\(\Leftrightarrow tan\dfrac{x}{2}.tan\dfrac{y}{2}=\dfrac{1}{3}\)

 

2sin(x+y)=sinx+siny2sin(x+y)=sinx+siny

⇔2.2.sinx+y2.cosx+y2=2.sinx+y2.cosx−y2⇔2.2.sinx+y2.cosx+y2=2.sinx+y2.cosx−y2

⇔2cosx+y2=cosx−y2⇔2cosx+y2=cosx−y2

⇔2(cosx2.cosy2−sinx2.siny2)=cosx2.cosy2+sinx2.siny2⇔2(cosx2.cosy2−sinx2.siny2)=cosx2.cosy2+sinx2.siny2

⇔cosx2.cosy2=3.sinx2.siny2⇔cosx2.cosy2=3.sinx2.siny2

⇔(sinx2:cosx2).(siny2:cosy2)=13⇔(sinx2:cosx2).(siny2:cosy2)=13

⇔tanx2.tany2=13⇔tanx2.tany2=13

 

AH
Akai Haruma
Giáo viên
19 tháng 8 2023

Đề thiếu. Bạn xem lại đề.

6 tháng 4 2017

1) \(\dfrac{1-cosx+cos2x}{sin2x-sinx}=cotx\)

\(VT=\dfrac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}\)

\(VT=\dfrac{cosx\left(2cos-1\right)}{sinx\left(2cosx-1\right)}\)

\(VT=\dfrac{cosx}{sinx}=cotx=VP\) ( đpcm )

b) \(\dfrac{sinx+sin\dfrac{x}{2}}{1+cosx+cos\dfrac{x}{2}}=tan\dfrac{x}{2}\)

\(VT=\dfrac{sin\left(2.\dfrac{x}{2}\right)+sin\dfrac{x}{2}}{1+cos\left(2.\dfrac{x}{2}\right)+cos\dfrac{x}{2}}\)

\(VT=\dfrac{2sin\dfrac{x}{2}.cos\dfrac{x}{2}+sin\dfrac{x}{2}}{1+2cos^2\dfrac{x}{2}-1+cos\dfrac{x}{2}}\)

\(VT=\dfrac{2sin\dfrac{x}{2}.cos\dfrac{x}{2}+sin\dfrac{x}{2}}{2cos^2\dfrac{x}{2}+cos\dfrac{x}{2}}\)

\(VT=\dfrac{sin\dfrac{x}{2}\left(2cos\dfrac{x}{2}+1\right)}{cos\dfrac{x}{2}\left(2cos\dfrac{x}{2}+1\right)}\)

\(VT=\dfrac{sin\dfrac{x}{2}}{cos\dfrac{x}{2}}=tan\dfrac{x}{2}=VP\) ( đpcm )

c) \(\dfrac{2cos2x-sin4x}{2cos2x+sin4x}=tan^2\left(\dfrac{\pi}{4}-x\right)\)

\(VT=\dfrac{2cos2x-sin\left(2.2x\right)}{2cos2x+sin\left(2.2x\right)}\)

\(VT=\dfrac{2cos2x-2sin2x.cos2x}{2cos2x+2sin2x.cos2x}\)

\(VT=\dfrac{2cos2x\left(1-sin2x\right)}{2cos2x\left(1+sin2x\right)}\)

\(VT=\dfrac{1-sin2x}{1+sin2x}\)

\(VP=tan^2\left(\dfrac{\pi}{4}-x\right)=\dfrac{1-cos2\left(\dfrac{\pi}{4}-x\right)}{1+cos2\left(\dfrac{\pi}{4}-x\right)}\)

\(VP=\dfrac{1-cos\left(\dfrac{\pi}{2}-2x\right)}{1+cos\left(\dfrac{\pi}{2}-2x\right)}\)

\(VP=\dfrac{1-sin2x}{1+cos2x}=VT\) ( đpcm )

d) \(tanx-tany=\dfrac{sin\left(x-y\right)}{cosx.cosy}\)

\(VP=\dfrac{sin\left(x-y\right)}{cosx.cosy}=\dfrac{sinx.cosy-cosx.siny}{cosx.cosy}\)

\(VP=\dfrac{sinx.cosy}{cosx.cosy}-\dfrac{cosx.siny}{cosx.cosy}\)

\(VP=\dfrac{sinx}{cosx}-\dfrac{siny}{cosy}=tanx-tany=VT\) ( đpcm )

8 tháng 3 2021

Áp dụng bất đẳng thức Côsi cho các số dương $x, y, z$, ta được:$x^{3}+y^{2} \geqslant 2 \sqrt{x^{3} \cdot y^{2}}=2 x y \cdot \sqrt{x}$$y^{3}+z^{2} \geqslant 2 \sqrt{y^{3} \cdot z^{2}}=2 y z \cdot \sqrt{y}$$z^{3}+x^{2} \geqslant 2 \sqrt{z^{3} \cdot x^{2}}=2 z x \cdot \sqrt{z}$Khi đó BĐT đã cho trở thành:$\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{2 \sqrt{x}}{2 x y \sqrt{x}}+\dfrac{2 \sqrt{y}}{2 y z \sqrt{y}}+\dfrac{2 \sqrt{z}}{2 z x \sqrt{z}}=\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} (1)$Mặt khác ta có:$\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}} \geqslant \dfrac{2}{x y} \Rightarrow \dfrac{1}{x y} \leqslant \dfrac{1}{2}\left(\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}\right)$

CMTT: $\dfrac{1}{y z} \leq \dfrac{1}{2}\left(\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}\right) ; \dfrac{1}{z x} \leqslant \dfrac{1}{2}\left(\dfrac{1}{z^{2}}+\dfrac{1}{x^{2}}\right)$Suy ra: $\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}(2)$Từ  $(1)$ và $(2)$ ta được: $\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}$Dấu " $="$ xảy ra $\Leftrightarrow x=y=z=1$

 

8 tháng 3 2021

Áp dụng bất đẳng thức Côsi cho các số dương $x, y, z$, ta được:

$x^{3}+y^{2} \geqslant 2 \sqrt{x^{3} \cdot y^{2}}=2 x y \cdot \sqrt{x}$

$y^{3}+z^{2} \geqslant 2 \sqrt{y^{3} \cdot z^{2}}=2 y z \cdot \sqrt{y}$

$z^{3}+x^{2} \geqslant 2 \sqrt{z^{3} \cdot x^{2}}=2 z x \cdot \sqrt{z}$

Khi đó BĐT đã cho trở thành:

$\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{2 \sqrt{x}}{2 x y \sqrt{x}}+\dfrac{2 \sqrt{y}}{2 y z \sqrt{y}}+\dfrac{2 \sqrt{z}}{2 z x \sqrt{z}}=\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} (1)$

Mặt khác ta có:

$\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}} \geqslant \dfrac{2}{x y} \Rightarrow \dfrac{1}{x y} \leqslant \dfrac{1}{2}\left(\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}\right)$

CMTT: $\dfrac{1}{y z} \leq \dfrac{1}{2}\left(\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}\right) ; \dfrac{1}{z x} \leqslant \dfrac{1}{2}\left(\dfrac{1}{z^{2}}+\dfrac{1}{x^{2}}\right)$

Suy ra: $\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}(2)$

Từ  $(1)$ và $(2)$ ta được: $\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}$

Dấu " $="$ xảy ra $\Leftrightarrow x=y=z=1$

AH
Akai Haruma
Giáo viên
24 tháng 5 2018

Lời giải:

Ta có: \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Mà theo BĐT Cauchy-Schwarz: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\)

Do đó: \(3\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3\)

-------

Ta có: \(\text{VT}=x-\frac{xz}{x^2+z}+y-\frac{xy}{y^2+x}+z-\frac{yz}{z^2+y}\)

\(=(x+y+z)-\left(\frac{xy}{y^2+x}+\frac{yz}{z^2+y}+\frac{xz}{x^2+z}\right)\)

\(\geq x+y+z-\frac{1}{2}\left(\frac{xy}{\sqrt{xy^2}}+\frac{yz}{\sqrt{z^2y}}+\frac{xz}{\sqrt{x^2z}}\right)\) (AM-GM)

\(=x+y+z-\frac{1}{2}(\sqrt{x}+\sqrt{y}+\sqrt{z})\)

Tiếp tục AM-GM: \(\sqrt{x}+\sqrt{y}+\sqrt{z}\leq \frac{x+1}{2}+\frac{y+1}{2}+\frac{z+1}{2}=\frac{x+y+z+3}{2}\)

Suy ra:

\(\text{VT}\geq x+y+z-\frac{1}{2}.\frac{x+y+z+3}{2}=\frac{3}{4}(x+y+z)-\frac{3}{4}\)

\(\geq \frac{9}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Ta có đpcm

Dấu bằng xảy ra khi $x=y=z=1$

4 tháng 12 2017

theo bđt cauchy schwarz ta có

\(\left\{{}\begin{matrix}\dfrac{2\sqrt{x}}{x^3+y^2}\le\dfrac{2\sqrt{x}}{2\sqrt{x^3y^2}}=\dfrac{1}{xy}\\\dfrac{2\sqrt{y}}{y^3+z^2}\le\dfrac{2\sqrt{y}}{2\sqrt{y^3z^2}}=\dfrac{1}{yz}\\\dfrac{2\sqrt{z}}{z^3+x^2}\le\dfrac{2\sqrt{z}}{2\sqrt{z^3y^2}}=\dfrac{1}{zy}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\le\dfrac{\dfrac{1}{x^2}+\dfrac{1}{y^2}}{2}+\dfrac{\dfrac{1}{y^2}+\dfrac{1}{z^2}}{2}+\dfrac{\dfrac{1}{z^2}+\dfrac{1}{x^2}}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)\(\Rightarrow dpcm\)

Câu 2:

\(A=2\cdot\dfrac{1}{2}+3\cdot\dfrac{1}{2}+1=1+1+1=3\)

Bài 3:

\(cos^2a=1-\left(\dfrac{12}{13}\right)^2=\dfrac{25}{169}\)

mà cosa>0

nên cosa=5/13

=>tan a=12/5; cot a=5/12

Câu 4: \(sin^2a=1-\dfrac{1}{4}=\dfrac{3}{4}\)

mà sina <0

nên sin a=-căn 3/2

=>tan a=-căn 3

\(A=-\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\cdot\left(-\sqrt{3}\right)=-\sqrt{3}\)