K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2020

2a+5b chia hết cho 7

=>6a+15b chia hết cho 7 (1)

ta có : nếu giả sử 3a+4b chia hết cho 7

=>6a+8b chia hết cho 7 (2)

Trừ (1) cho (2) ta được (6a+15b)-(6a+8b)=7b chia hết cho 7

 Suy ra 3a+4b chia hết cho 7

12 tháng 4 2020

Ta có: 

( 9 a + 12 b ) - ( 2a + 5b ) = 7a + 7b = 7 (a + b ) chia hết cho 7 

mà ( 2a + 5b ) chia hết cho 7

=> 9a + 12 b chia hết cho 7

=> 3 ( 3a + 4b ) chia hết cho 7 

=> ( 3a + 4b ) chia hết cho 7

13 tháng 7 2016

câu thứ 2

 a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17 
10a-50b=10a+b-51b 
51b chia hết cho 17 nên 10a+b chia hết cho 17

51a : 17

=> 51a - a + 5b : 17

=> 50a + 5b : 17

=> 5 ( 10a + b ) : 17

=> 10a + b : 17

NV
2 tháng 1

- Nếu \(2a+3b⋮7\Rightarrow4\left(2a+3b\right)⋮7\Rightarrow8a+12b⋮7\)

\(\Rightarrow8a+5b+7b⋮7\)

Mà \(7b⋮7\) với mọi  b nguyên \(\Rightarrow8a+5b⋮7\)

- Nếu \(8a+5b⋮7\), do \(7b⋮7\Rightarrow8a+5b+7b⋮7\Rightarrow8a+12b⋮7\)

\(\Rightarrow4\left(2a+3b\right)⋮7\)

Mà 4 và 7 nguyên tố cùng nhau \(\Rightarrow2a+3b⋮7\)

3 tháng 12 2021

a, Ta có:\(2a+b+5\left(a+4b\right)=2a+b+5a+20b=7a+21b=7\left(a+3b\right)⋮7\)

Mà \(2a+b⋮7\Rightarrow a+4b⋮7\)

b, Ta có:\(2\left(2a+b\right)+3a-2b=4a+2b+3a-2b=7a⋮7\)

Mà \(2a+b⋮7\Rightarrow3a-2b⋮7\)

28 tháng 12 2016

ta có: a+4b \(⋮\)7

=> 3a +12b \(⋮\)7

=>(3a+5b)+7b \(⋮\)7

=> 3a+5b \(⋮\)7 ( vì 7b \(⋮\)7 )

vậy 3a+5b \(⋮\)7(đpcm)

k cho mình nha bạn!!!><

Giả sử: abc¯¯¯¯¯¯¯+(2a+3b+c)abc¯+(2a+3b+c)chia hết cho7, ta có:

abc¯¯¯¯¯¯¯+(2a+3b+c)=a.100+b.10+c+2a+3b+c=a.98+7.babc¯+(2a+3b+c)=a.100+b.10+c+2a+3b+c=a.98+7.b

Vì a.98a.98 chia hết cho 7(98 chia hết cho 7)7.b7.b chia hết cho 7 ⇒a.98+b.7⇒a.98+b.7 chia hết cho 7

⇒abc¯¯¯¯¯¯¯+(2a+3b+c)⇒abc¯+(2a+3b+c)chia hết cho 7

Mà theo đầu đề bài abc¯¯¯¯¯¯¯abc¯chia hết cho 7 => 2a+3b+c chia hết cho 7

14 tháng 2 2020

Ta có : 2a+3b\(⋮\)7

\(\Rightarrow\)4(2a+3b)\(⋮\)7

\(\Rightarrow\)8a+12b\(⋮\)7

\(\Rightarrow\)8a+5b+7b\(⋮\)7

Vì 7b\(⋮\)7

\(\Rightarrow\)8a+5b\(⋮\)7

Vậy 8a+5b\(⋮\)7.

6 tháng 1 2017

ta xó: 3a+4b+5c \(⋮\)11

=>12a+16b+20c \(⋮\)11

=>12a+11b+5b+22c-2c

=>12a+5b-2c \(⋮\)11 (vì 11b \(⋮\)11 và 22c \(⋮\)11 )

vậy 12a+5b-2c \(⋮\)11.(đpcm)

chép ở đâu z bạn o0o đồ khùng o0o

tớ bít nè chắc ở SKTS_BFON

chép nhận tk đúng ko

5 tháng 1 2017

ta xó: 3a+4b+5c \(⋮\)11

=>12a+16b+20c \(⋮\)11

=>12a+11b+5b+22c-2c

=>12a+5b-2c \(⋮\)11 (vì 11b \(⋮\)11 và 22c \(⋮\)11 )

vậy 12a+5b-2c \(⋮\)11.(đpcm)

chúc năm mới hạnh phúc. k nha.

5 tháng 1 2017

lớp mấy

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

2 tháng 12 2017

a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^