Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có:
\(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Rightarrow2\left(a^2+b^2\right)-\left(a-b\right)^2=0\)
\(\Rightarrow2a^2+2b^2-\left(a^2-2ab+b^2\right)=0\)
\(\Rightarrow2a^2+2b^2-a^2+2ab-b^2=0\)
\(\Rightarrow a^2+2ab+b^2=0\)
\(\Rightarrow\left(a+b\right)^2=0\)
\(\Rightarrow a+b=0\)
Vì hai số đối nhau là hai số có tổng bằng 0
Vậy a và b là hai số đối nhau
Bài 2:
Ta có:
\(a^2+b^2+c^2=ab+bc+ac\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0\) với mọi a và b
\(\left(a-c\right)^2\ge0\) với mọi a và c
\(\left(b-c\right)^2\ge0\) với mọi b và c
\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) với mọi a, b, c
Mà \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\)
Vậy a = b = c
Bài 3:
Sửa đề:
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Rightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+b^2y^2+2axby\)
\(\Rightarrow a^2y^2+b^2x^2=2axby\)
\(\Rightarrow a^2y^2-2axby+b^2x^2=0\)
\(\Rightarrow\left(ay-bx\right)^2=0\)
\(\Rightarrow ay-bx=0\)
\(\Rightarrow ay=bx\)
\(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\)
a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014
=> (k – n)(k + n) = 2014 (*)
Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.
Mặt khác (k – n)(k + n) = 2014 là chẵn
Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4
Mà 2014 không chia hết cho 4
Suy ra đẳng thức (*) không thể xảy ra.
Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương
b) Với 2 số a, b dương:
Xét: a2 + b2 – ab ≤ 1
<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)
<=> a3 + b3 ≤ a + b
<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)
<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6
<=> 2a3b3 ≤ ab5 + a5b
<=> ab(a4 – 2a2b2 + b4) ≥ 0
<=> ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .
Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5
Ko mat tinh tong quat: \(a\ge b\ge c\)
\(a^2\left(a-b\right)+b^2\left(a-c\right)+c^2\left(a-b\right)=0\)
\(VT\ge a^2\left(b-b\right)+b^2\left(c-c\right)+c^2\left(a-b\right)\)
\(VT\ge0+0+c^2\left(a-b\right)\)
\(c^2\left(a-b\right)\ge0\) (a>=b)
\(VT\ge0\).Dấu bằng khi ít nhất 2 số bằng nhau (a=b hoặc a=c)
TUong tu voi cac cach gs khac
a, b là 2 số tự nhiên liên tiếp nên b=a+1. Thay vào p ta có:
p = a2+(a+1)2+a2*(a+1)2
p= a2+a2+2a+1+a2(a2+2a+1)
p=a4+ 2a3+3a2+2a+1
p=(a4+2a3+a) +2 (a2+a) +1
p=(a2+a)2+2 (a2+a) +1
p=[(a2+a) + 1]2
Vậy p là số chính phương.
Nếu a lẻ thì (a2+a) chẵn => p lẻ
Nếu a chẵn thì (a2+a) chẵn => p lẻ
Vậy p là số chính phương lẻ.
\(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Rightarrow2a^2+2b^2=a^2-2ab+b^2\)
\(\Rightarrow2a^2-a^2+2b^2-b^2=-2ab\)
\(\Rightarrow a^2+b^2=-2ab\)
\(\Rightarrow a^2+b^2+2ab=0\)
\(\Rightarrow\left(a+b\right)^2=0\)
Để a + b = 0 thi a phải là số đối của nhau ( đpcm )
2( a2 + b2 ) = ( a - b )2
<=> 2a2 + 2b2 = a2 - 2ab + b2
<=> 2a2 + 2b2 - a2 + 2ab - b2 = 0
<=> a2 + 2ab + b2 = 0
<=> ( a + b )2 = 0
<=> a + b = 0
<=> a = -b
=> đpcm