K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2\left(a^2+b^2\right)=\left(a-b\right)^2\)

\(\Rightarrow2a^2+2b^2=a^2-2ab+b^2\)

\(\Rightarrow2a^2-a^2+2b^2-b^2=-2ab\)

\(\Rightarrow a^2+b^2=-2ab\)

\(\Rightarrow a^2+b^2+2ab=0\)

\(\Rightarrow\left(a+b\right)^2=0\)

Để a + b = 0 thi a phải là số đối của nhau ( đpcm )

29 tháng 8 2020

2( a2 + b2 ) = ( a - b )2

<=> 2a2 + 2b2 = a2 - 2ab + b2

<=> 2a2 + 2b2 - a2 + 2ab - b2 = 0

<=> a2 + 2ab + b2 = 0

<=> ( a + b )2 = 0

<=> a + b = 0

<=> a = -b

=> đpcm

10 tháng 9 2018

Bài 1:

Ta có:

\(2\left(a^2+b^2\right)=\left(a-b\right)^2\)

\(\Rightarrow2\left(a^2+b^2\right)-\left(a-b\right)^2=0\)

\(\Rightarrow2a^2+2b^2-\left(a^2-2ab+b^2\right)=0\)

\(\Rightarrow2a^2+2b^2-a^2+2ab-b^2=0\)

\(\Rightarrow a^2+2ab+b^2=0\)

\(\Rightarrow\left(a+b\right)^2=0\)

\(\Rightarrow a+b=0\)

Vì hai số đối nhau là hai số có tổng bằng 0

Vậy a và b là hai số đối nhau

Bài 2:

Ta có:

\(a^2+b^2+c^2=ab+bc+ac\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

\(\left(a-b\right)^2\ge0\) với mọi a và b

\(\left(a-c\right)^2\ge0\) với mọi a và c

\(\left(b-c\right)^2\ge0\) với mọi b và c

\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) với mọi a, b, c

\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\)

Vậy a = b = c

Bài 3:

Sửa đề:

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Rightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+b^2y^2+2axby\)

\(\Rightarrow a^2y^2+b^2x^2=2axby\)

\(\Rightarrow a^2y^2-2axby+b^2x^2=0\)

\(\Rightarrow\left(ay-bx\right)^2=0\)

\(\Rightarrow ay-bx=0\)

\(\Rightarrow ay=bx\)

\(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\)

2 tháng 12 2016

a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014

=> (k – n)(k + n) = 2014 (*)

Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.

Mặt khác (k – n)(k + n) = 2014 là chẵn

Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4

Mà 2014 không chia hết cho 4

Suy ra đẳng thức (*) không thể xảy ra.

Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương

b) Với 2 số a, b dương:

Xét: a2 + b2 – ab ≤ 1

<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)

<=> a3 + b3 ≤ a + b

<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)

<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6

<=> 2a3b3 ≤ ab5 + a5b

<=> ab(a4 – 2a2b2 + b4) ≥ 0

<=> ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .

Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5

2 tháng 12 2016

Cảm ơn bạn nha ! @Phùng Khánh Linh

3 tháng 11 2015

bài 2

a2(b-c)+b2(c-a)+c2(a-b)=a2b-a2c+b2c-b2a+c2a-c2b=b(a2-c2)+ac(a-c)-b2(a-c)=(a-c)(ab-bc+ac-b2)=(a-c)(c-b)(a-b)=0

=>a-c=0 hoặc c-b=0 hoặc a-b=0

=>c=a hoặc c=b hoặc a=b

=>đpcm

nhớ tick vs nha

17 tháng 9 2018

Ko mat tinh tong quat: \(a\ge b\ge c\)

\(a^2\left(a-b\right)+b^2\left(a-c\right)+c^2\left(a-b\right)=0\)

\(VT\ge a^2\left(b-b\right)+b^2\left(c-c\right)+c^2\left(a-b\right)\)

\(VT\ge0+0+c^2\left(a-b\right)\)

\(c^2\left(a-b\right)\ge0\) (a>=b)

\(VT\ge0\).Dấu bằng khi ít nhất 2 số bằng nhau (a=b hoặc a=c)

TUong tu voi cac cach gs khac

31 tháng 10 2021

a, b là 2 số tự nhiên liên tiếp nên b=a+1. Thay vào p ta có:

p = a2+(a+1)2+a2*(a+1)2

p= a2+a2+2a+1+a2(a2+2a+1)

p=a4+ 2a3+3a2+2a+1

p=(a4+2a3+a) +2 (a2+a) +1

p=(a2+a)2+2 (a2+a) +1

p=[(a2+a) + 1]2

Vậy p là số chính phương.

Nếu a lẻ thì (a2+a) chẵn => p lẻ

Nếu a chẵn thì (a2+a) chẵn => p lẻ

Vậy p là số chính phương lẻ.