\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2015

Có: a22 = a1.a3

=> \(\frac{a_1}{a_2}=\frac{a_2}{a_3}\)

Có: a32 = a2.a4

=> \(\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

=> \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

=> \(\frac{a_1\text{3}}{a_2\text{3}}=\frac{a_2\text{3}}{a_3\text{3}}=\frac{a_3\text{3}}{a_4\text{3}}=\frac{a_1\text{3}+a_2\text{3}+a_3\text{3}}{a_2\text{3}+a_3\text{3}+a_4\text{3}}=\frac{a_1.a_2.a_3}{a_2.a_3.a_4}=\frac{a_1}{a_4}\)(Tính chất dãy tỉ số bằng nhau)

=>\(\frac{a_1\text{3}+a_2\text{3}+a_3\text{3}}{a_2\text{3}+a_3\text{3}+a_4\text{3}}=\frac{a_1}{a_4}\)(đpcm)

20 tháng 11 2019

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2012}}{a_1}=\frac{a_1+a_2+a_3+...+a_{2012}}{a_1+a_2+a_3+...+a_{2012}}=1\)(Vì \(a_1+a_2+a_3+...+a_{2012}\ne0\))

Khi đó \(a_1=a_2=a_3=...=a_{2012}\)

=> \(M=\frac{a_1^{2012}+a_2^{2012}+...+a_{2012}^{2012}}{\left(a_1+a_2+...+a_{2012}\right)^{2012}}=\frac{2012.a_1^{2012}}{\left(2012.a_1\right)^{2012}}=\frac{1}{2012^{2011}}\)

20 tháng 11 2019

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2012}}{a_1}=\frac{a_1+a_2+...+a_{2012}}{a_2+a_3+...+a_1}=1\)

\(\Rightarrow a_1=a_2=a_3=...=a_{2012}\)

Khi đó M = \(\frac{2012.a_1^{2012}}{\left(2012.a_1\right)^{2012}}=\frac{2012.a_1^{2012}}{2012^{2012}.a_1^{2012}}=\frac{2012}{2012^{2012}}=\frac{1}{2012^{2011}}\)

2 tháng 12 2015

Theo t/c của dãy tỉ số bằng nhau ta có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2013}}{a_{2014}}=\frac{a_{2014}}{a_1}=\frac{a_1+a_2+...+a_{2014}}{a_2+a_3+...+a_{2014}+a_1}=1\)

=> Đặt \(a_1=a_2=a_3=...=a_{2014}=k\)

=> M = \(\frac{k^2+k^2+...+k^2}{ \left(k+k+...+k\right)^2}=\frac{2014k^2}{\left(2014.k\right)^2}=\frac{2014.k^2}{2014^2.k^2}=\frac{1}{2014}\)

 

 

8 tháng 7 2021

\(\text{Theo tính chất dãy tỉ số bằng nhau , ta có :}\)

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2013}}{a_{2014}}=\frac{a_{2014}}{a_1}=\frac{a_1+a_2+...+a_{2014}}{a_2+a_3+...+a_{2014}+a_1}=1\)

\(\Rightarrow\text{Đặt }a_1=a_2=a_3=...=a_{2014}=k\)

\(\Rightarrow\text{ M = }\frac{k^2+k^2+...+k^2}{\left(k+k+...+k\right)^2}=\frac{2014k^2}{\left(2014.k\right)^2}=\frac{2014.k^2}{2014^2.k^2}=\frac{1}{2014}\)

\(\text{Vậy M =}\frac{1}{2014}\)

\(\text{~~Học tốt~~}\)

4 tháng 1 2017

Ta có : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}....\frac{a_{2017}}{a_{2018}}=\frac{a_1}{a_{2018}}=-5^{2017}\)

Mặt khác : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\left(\frac{a_1}{a_2}\right)^{2017}\)

\(\Rightarrow\frac{a_1}{a_2}=-5\) (1)

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=....=\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+a_3+....+a_{2017}}{a_2+a_3+a_4+.....+a_{2018}}\) (2)

Từ (1) và (2)

=> S = -5

8 tháng 1 2017

sao tự hỏi rồi tự trả lời vậy bạn :)