K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NM
2
TT
5 tháng 2 2020
Ta thấy : \(3a^22b^6\) luôn dương. Mà \(3a^22b^6\) và \(-2a^5b^2\) cùng dấu
\(\Rightarrow-2a^5b^2\) dương. Mà \(b^2\) luôn dương
\(\Rightarrow-2a^5\) dương \(\Rightarrow a^5\) âm \(\Rightarrow a\) âm
Vì vậy \(a\) mang dấu âm.
5 tháng 2 2020
Ta có : \(3a^2b^6\ge0\)với mọi a,b
Mà \(-2a^5b^2\)và \(3a^2b^6\)cùng dấu
=> \(-2a^5b^2\ge0\)
Lại do \(b^2\ge0\)=> \(-2a^5b^2\ge0\)
<=> \(-2a^5\ge0\)
<=> \(a^5< 0\)
<=> \(a< 0\)
Vậy a mang dấu âm
DH
1
6 tháng 3 2020
câu 1
xét tích 3 số
=(3a^2.b.c^3).(-2a^3b^5c).(-3a^5.b^2.c^2)
=[3.(-2).(-3)].(a^2.a^3.a^5).(b.b^5.b^2).(c.c^3.c^2)
=18.a^10.b^8.c^5 bé hơn hoặc bằng 0
=>tích 3 số đó không thể cùng âm=>3 số đó ko cùng âm dc
bây giờ mk đi học rùi tí về mk làm típ nhá
Xét \(-2a^5b^2\)và \(3a^2b^6\), ta thấy:
\(b^2,b^6\ge0\)
TH1: \(b=0\)
\(\Rightarrow-2a^5b^2=3a^2b^6=0\)
\(\Rightarrow\)a thuộc dấu gì cũng được
TH2: \(b\in Z^{ }\left(b\ne0\right)\)
\(\Rightarrow b^2,b^6>0\)
Để \(-2a^5b^2\)cùng dấu với \(3a^2b^6\)
Thì \(-2a^5\)phải cùng dấu với \(3a^2\)
Mà \(3a^2\ge0\)
\(\Rightarrow a< 0\)
\(\Rightarrow\)Dấu a là âm
TH3 \(a=0\)
\(\Rightarrow-2a^5b^2=3a^2b^6=0\)
Vậy dấu của a sẽ tùy thuộc vào b theo TH1, TH2 hay a =0
Vì \(b^2\)và \(b^6\)có số mũ chẵn \(\Rightarrow b^2\)và \(b^6\)có cùng dấu dương
\(\Rightarrow\)Ta chỉ xét \(-2a^5\)và \(3a^2\)cùng dấu
Vì \(a^2\ge0\forall a\)\(\Rightarrow3a^2\ge0\forall a\)
\(\Rightarrow\)Để \(-2a^5\)và \(3a^2\)cùng dấu thì \(-2a^5\ge0\)
\(\Rightarrow a^5\le0\)\(\Rightarrow a\le0\)( vì \(a^5\)có số mũ lẻ )
Vậy \(a=0\)hoặc dấu của a là dấu âm