Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Giả sử trong 20 điểm, ko có 3 điểm nào thẳng hàng. Khi đó,số đường thẳng vẽ được là: (19.20):2=190
Trong a điểm,giả sử ko có 3 điểm nào thẳng hàng,Số đường thẳng vẽ được là:(a-1).a:2 Thực tế trong a điểm này ta chỉ vẽ được 1 đường thẳng.Vậy ta có:
190-(a-1).a:2+1=70
=>a=7
Giả sử trong 20 điểm, ko có 3 điểm nào thẳng hàng. Khi đó,số đường thẳng vẽ được là: ﴾19.20﴿:2=190 Trong a điểm,giả sử ko có 3 điểm nào thẳng hàng,Số đường thẳng vẽ được là:﴾a‐1﴿.a:2 Thực tế trong a điểm này ta chỉ vẽ được 1 đường thẳng.Vậy ta có: 190‐﴾a‐1﴿.a:2+1=70 =>a=7
a) Các số lập được là:
450;504;540
b) Các số lập được là;
405;450;540
đáp án nè bn
a)số đó chia hết cho 2 là:504,540,450
b)số đó chia hết cho 5 là 504,405,540
đúng thì bn nhớ tc nhé
Nếu tồn tại 3 số nguyên a,b,c thõa mãn
abc+a=-625
abc+b=-633
abc+c=-597
Chỉ có 2 số lẻ thì tích mới là 1 số lẻ
Vì a,b,c là số lẻ
Nên abc cũng là số lẻ
Mà abc+a là chẵn ko thể bằng số -625 ( số lẻ)
abc+b ... tương tự như trên
Nên ko tồn tại số nguyên a b c thõa mãn đk đề bài đã cho
Giả sử tồn tại các số nguyên a; b; c thỏa mãn:
a.b.c + a = -625 ; a.b.c + b = -633 và a.b.c + c = -597
Xét từng điều kiện ta có:
a.b.c + a = a.(b.c + 1) = -625
a.b.c + b = b.(a.c + 1) = -633
a.b.c + c = c.(a.b + 1) = -597
Chỉ có hai số lẻ mới có tích là một số lẻ ⇒ a; b; c đều là số lẻ ⇒ a.b.c cũng là số lẻ.
Khi đó a.b.c + a là số chẵn, không thể bằng -625 (số lẻ)
Vậy không tồn tại các số nguyên a; b; c thỏa mãn điều kiện đề bài.
Em điều chỉnh nhé, chưa có biểu thức A đâu!
a. Số nguyên n khác 0 thì A là phân số.
b. - Thay n = 0 vào A, ta được: \(\dfrac{3}{0}\left(vô.lí\right)\) (A không có giá trị)
- Thay n = 2 vào A, ta được: \(\dfrac{3}{2}\) \(\left(A=\dfrac{3}{2}\right)\)
- Thay n = -7 vào A, ta được: \(\dfrac{3}{-7}\) \(\left(A=\dfrac{3}{-7}\right)\)
b = 0
a= bất kì số nào
Ta có:
bbb : ab = a x b
=> bbb : b : ab = a
=> 111 : 37 = 3
=> a = 3
b = 7