![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Áp dụng BĐT Cô-si cho các số không âm:
\(x^4+1+1+1\geq 4\sqrt[3]{x^4}=4|x|\geq 4x\)
\(y^4+1+1+1\geq 4\sqrt[4]{y^4}=4|y|\geq 4y\)
Cộng theo vế:
\(x^4+y^4+6\geq 4(x+y)\)
\(\Leftrightarrow x^4+y^4+6\geq 8\Leftrightarrow x^4+y^4\geq 2\)
Ta có đpcm.
Dấu bằng xảy ra khi \(x=y=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
+ x+y=2 ta có bảng
x | 0 | 1 | 2 |
y | 2 | 1 | 0 |
+khi x=0, y=2 ta có BPT 04 + 24 >= 2
+ khi x= 1, y=1 ta có BPT 14 + 14 >=2
+ khi x = 2, y=0 ta có BPT 24 + 04 >=2
Nên x4 + y4 >=2
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt A=x^4+y^4+z^4 ,P=x^2+y^2+z^2
Ta có A=(x^2)^2+(y^2)^2+(z^2)^2
Áp dụng bđt Cauchy-Schwarz ta có
3A=[(x^2)^2+(y^2)^2+(z^2)^2](1^2+1^2+1^2) >/ (x^2+y^2+z^2)^2=> A >/ (x^2+y^2+z^2)^2/3
Áp dụng bđt Cauchy-Schwarz lần 2
3P=(x^2+y^2+z^2)(1^2+1^2+1^2) >/ (x+y+z)^2=> P >/ (x+y+z)^2/3 >/ 2^2/3 >/ 4/3
=> A >/ (4/3)^2/3=16/27
Đẳng thức xảy ra <=> x=y=z=2/3
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta cá:\(K=x^2-2\times x-y=x^2-\left(2\times x+y\right)\)
Để K đạt GTLN
Suy ra x^2 lớn nhất nên x lớn nhất
2x+y nhỏ nhất nên y nhỏ nhất(2x Ko nhỏ nhất vi x lớn nhất nên 2x lớn nhất)
Mà \(y\ge0\)
Ta chọn y=0,thay vào 2x+y ta đc
\(2\times x+0\le4\)
\(\Rightarrow2\times x\le4\)
\(\Rightarrow x\le2\)
Mà x lớn nhất nên ta chọn x=2 do đá k sẽ bằng
\(K=2^2-2\times2-0=4-4=0\)
Vậy K đạt GTLN là 0 tại x =2 và y=0
nhớ h cho mk nha
Áp dụng Bất đẳng thức Bunyakovsky ta có:
\(\left(x+y\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)\)
\(\Leftrightarrow\)\(\left(x+y\right)^2\le2\left(x^2+y^2\right)\)
\(\Leftrightarrow\)\(\left(x+y\right)^4\le4\left(x^2+y^2\right)^2\) (2)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
Áp dụng Bất đẳng thức Bunyakovsky ta có:
\(\left(x^2+y^2\right)^2\le\left(1^2+1^2\right)\left(x^4+y^4\right)\)
\(\Leftrightarrow\)\(4\left(x^2+y^2\right)^2\le8\left(x^4+y^4\right)\) (1)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x^2=y^2\)\(\Leftrightarrow\)\(x=\pm y\)
Từ (1) và (2) suy ra: \(\left(x+y\right)^4\le8\left(x^4+y^4\right)\)
\(\Leftrightarrow\) \(16\le8\left(x^4+y^4\right)\)
\(\Leftrightarrow\) \(x^4+y^4\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)