K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2017

\(2x+y=6\Rightarrow y=6-2x\) Thay vào P ta được :

\(P=x\left(6-2x\right)=6x-2x^2=-2\left(x^2-3x\right)=-2\left[x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2\right]\)

\(=-2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]=-2\left(x-\frac{3}{2}\right)^2-2.\frac{-9}{4}=-2\left(x-\frac{3}{2}\right)^2+\frac{9}{2}\)

Vì \(-2\left(x-\frac{3}{2}\right)^2\le0\)  \(\forall x\) nên \(-2\left(x-\frac{3}{2}\right)^2+\frac{9}{2}\le\frac{9}{2}\forall x\)

Dấu "=" xảy ra <=> \(-2\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\Rightarrow y=6-2.\frac{3}{2}=3\)

Vậy \(P_{max}=\frac{9}{2}\) tại \(x=\frac{3}{2};y=3\)

21 tháng 7 2021

Đúng thì like giúp mik nha. Thx bạnundefined

NV
21 tháng 7 2021

\(A=xy+xz+2yz+2xz=x\left(y+z\right)+2z\left(x+y\right)\)

\(=x\left(6-x\right)+2z\left(6-z\right)=-x^2+6x+2\left(-z^2+6z\right)\)

\(=-\left(x-3\right)^2-2\left(z-3\right)^2+27\le27\)

\(A_{max}=27\) khi \(\left(x;y;z\right)=\left(3;0;3\right)\)

23 tháng 11 2016

với mọi x, y, z ta có:
(x-y)^2 +(y-z)^2+ (z-x)^2>=0
<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0
<=>x^2 + y^2 +z^2 - xy -yz -zx >=0
<=>(x+y+z)^2 >= 3(x+y+z)
<=>[(x+y+z)^2]/3 >= xy+yz+ zx
=>xy +yz + zx <=3
dấu = xảy ra khi x=y=z =1

Khi đó P=1.1+1.1+1.1=3

29 tháng 7 2020

Bài làm:

Ta có: \(x+y+z=8\Leftrightarrow\left(x+y+z\right)^2=64\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=64\)

Mà \(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2zx\end{cases}}\)\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)

Thay vào ta có: \(64\ge3\left(xy+yz+zx\right)\)

\(\Leftrightarrow xy+yz+zx\le\frac{64}{3}\)

Dấu "=" xảy ra khi: \(x=y=z=\frac{8}{3}\)

Vậy Max(B) = 64/3 khi x = y = z = 8/3

6 tháng 12 2017

Ta có: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

=> \(\left(x^2+\frac{y^2}{4}\right)+\left(x^2+\frac{1}{x^2}\right)=4\)

Lại có: \(x^2+\frac{y^2}{4}\ge2.x.\frac{y}{2}=xy\) Và \(x^2+\frac{1}{x^2}\ge2.x.\frac{1}{x}=2\)

=> \(4\ge xy+2\)=> \(2\ge xy\)

=> \(A=2016+xy\le2016+2=2018\)

=> Amin=2018

3 tháng 10 2020

\(\sqrt[]{\sqrt{ }\frac{ }{ }\sqrt[]{}3\hept{\begin{cases}\\\\\end{cases}}3\frac{ }{ }\sqrt{ }\cos\hept{\begin{cases}\\\\\end{cases}}\Omega3\cong}\)

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Ta cá:\(K=x^2-2\times x-y=x^2-\left(2\times x+y\right)\)

Để K đạt GTLN

Suy ra x^2 lớn nhất nên x lớn nhất

2x+y nhỏ nhất nên y nhỏ nhất(2x Ko nhỏ nhất vi x lớn nhất nên 2x lớn nhất)

Mà \(y\ge0\)

Ta chọn y=0,thay vào 2x+y ta đc

\(2\times x+0\le4\)

\(\Rightarrow2\times x\le4\)

\(\Rightarrow x\le2\)

Mà x lớn nhất nên ta chọn x=2 do đá k sẽ bằng

\(K=2^2-2\times2-0=4-4=0\)

Vậy K đạt GTLN là 0 tại x =2 và y=0

nhớ h cho mk nha