K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2016

to moi hoc lop 5 thoi 

6 tháng 3 2016

Ta có:

\(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z=-34\)

\(\Leftrightarrow\)  \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)

\(\Leftrightarrow\)  \(4x^2-\left(4xy+4xz\right)+\left(y^2+2yz+z^2\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)

\(\Leftrightarrow\)  \(4x^2-4x\left(y+z\right)+\left(y+z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

\(\Leftrightarrow\)  \(\left[2x-\left(y+z\right)\right]^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

Mặt khác, ta lại có:  \(\left[2x-\left(y+z\right)\right]^2\ge0;\)  \(\left(y-3\right)^2\ge0\)  và  \(\left(z-5\right)^2\ge0\)  với mọi  \(x;\)  \(y;\)  \(z\)

nên  \(\left[2x-\left(y+z\right)\right]^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)

Do đó,  dấu  \(''=''\)  xảy ra  \(\Leftrightarrow\)   \(\left[2x-\left(y+z\right)\right]^2=0;\)  \(\left(y-3\right)^2=0\)  và  \(\left(z-5\right)^2=0\)

                                           \(\Leftrightarrow\)   \(2x-\left(y+z\right)=0;\)  \(y-3=0\)  và  \(z-5=0\)

                                           \(\Leftrightarrow\)   \(x=\frac{y+z}{2};\)  \(y=3\)  và  \(z=5\)

Khi đó,  \(x=\frac{3+5}{2}=\frac{8}{2}=4\)

Thay các giá trị trên của các biến  \(x;\)  \(y;\)  \(z\)  lần lượt vào  biểu thức  \(Q\), ta được:

\(Q=\left(4-4\right)^{2014}+\left(3-4\right)^{2014}+\left(5-4\right)^{2014}=2\)

22 tháng 9 2016

*Max

2(x^2+y^2)-2xy=8

<=> x^2+y^2+ (x-y)^2=8

<=> A\(\le\)8

Dấu bằng xảy ra khi (x,y)={(2,2),(-2,-2)}

*Min

2(x^2+y^2)=8+2xy

<=>3(x^2+y^2)=8+x^2+y^2+2xy

<=>3A=8+(x+y)^2

<=>A\(\ge\)8/3

Dấu bằng xảy ra khi (x,y)={(\(\frac{\sqrt{2}}{3},-\frac{\sqrt{2}}{3}\)),(\(-\frac{\sqrt{2}}{3},\frac{\sqrt{2}}{3}\))}

22 tháng 9 2016

Thanks bn nha

19 tháng 9 2019

Bài này có nhiều cách, xin phép làm 2 cách đơn giản. Tuy nhiên ở cách 2 tính sai chỗ nào thì tự check:) (chắc ko sai đâu:v đừng lo quá mức)

Cách 1: \(x^2+y^2\ge2xy\)

\(2x^2+2z^2\ge4xz\)

\(2y^2+2z^2\ge4yz\)

Cộng theo vế 3 bđt trên kết hợp giả thiết suy ra \(S\ge10\)

Cách 2:

Xét \(S-2\left[xy+2yz+2zx\right]\)

\(=\left(x-y\right)^2+2\left(y-z\right)^2+2\left(z-x\right)^2\ge0\)

Do đó...

14 tháng 11 2019

Tuy nhiên, sau đây mới là cách phân tích ngắn nhất chỉ với 2 bình phương không âm!

Ta có:\(S-2\left[xy+2\left(yz+zx\right)\right]\)\(=2\left(x-y\right)^2+\left(x+y-2z\right)^2\ge0\)

Vậy \(S\ge10\). It's verry beautiful!