Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\overline{a,b}.\overline{ab,a}=\overline{ab,ab}\)
\(\Leftrightarrow\)\(\left(\overline{a,b}.10\right)\left(\overline{ab,a}.10\right)=\overline{ab,ab}.100\)
\(\Leftrightarrow\)\(\overline{ab}.\overline{aba}=\overline{abab}\)
\(\Leftrightarrow\)\(\overline{ab}.\overline{aba}=\overline{ab}.\left(100+1\right)\)
\(\Leftrightarrow\)\(\overline{aba}=101\)
\(\Rightarrow\)\(a=1\)\(;\)\(b=0\)
Vậy \(a=1\) và \(b=0\)
Vì 2a+2b=10b+a suy ra a=8b
Mà a+b=căn ab
=> a2+2ab+b2=10a+b
=>(8b)2+2(8b)b+b2=10(8b)+b
=>81b2=81b
Lại có b>0 =>b=1 =>a=8
Vậy a-b=7
a = 1 => b = 10 => m = 60
a = 2 => b = 9 => m = 54
a = 3 => b = 8 => m = 48
a = 4 => b = 7 => m = 42
xyz = 60+54+48+42 = 204
Mật khẩu đầy đủ: math1204
Bài 2 :
a) \(10\le\overline{a_7a_8}\le31\) để \(100\le\left(\overline{a_7a_8}\right)^2\le999\) là số có ba chữ số.
Với mỗi số trong khoảng \(\left\{10;11;12;...;31\right\}\) ta lại có một số \(\overline{a_1a_2a_3}\) khác nhau; còn a4; a5; a6 tùy ý.
b) Trước hết : \(23\le\overline{a_7a_8}\le46\)
Trước hết để a7a8 khi lập phương lên sẽ vẫn có chữ số tận cùng ban đầu thì \(a_8\in\left\{0;1;4;5;6;9\right\}\)
Giả sử a8 = 0 thì số a4a5a6a7a8 chia hết cho 103 = 1000; hay a7 phải bằng 0; loại.
Nếu a8 = 1 thì xét \(23\le\overline{a_7a_8}\le46\) có số 31 không thỏa mãn.
Tương tự xét các trường hợp còn lại khi đã có giới hạn \(23\le\overline{a_7a_8}\le46\).
Bài 1 :
Không đủ dữ kiện.
Ngộ nhỡ m = n = 2 thì điều phải chứng minh là sai.
vì ab = 10a+b
=> a+b=\(\sqrt{10a+b}\)(1)
vì 2(a+b) =ba
=> 2(a+b)=10b+a(2)
Từ (1) và (2)=> 2(a+b)=2\(\sqrt{10a+b}\)=10b+a(*)
<=> 2a+2b=10b+a
<=> a=8b(3)
Thay (3) vào (2) có: 2(a+b)=10b+a=18b(4)
Thay (4) vào (*) ta có:
2\(\sqrt{81b}\)=18b
=>18\(\sqrt{b}\)=18b
=> b=1
=> a=8
=. a-b=7
= 0 nha