\(x^2+y^2+xy=1\). Tập giá trị của P = xy là .....???

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

Gọi T là tập giá trị của A. Điều kiện để \(m\in T\) là hệ phương trình sau có nghiệm \(\left(x,y\right)\) với \(x\ne0;y\ne0\)

\(\begin{cases}xy\left(x+y\right)=x^2-xy+y^2\\\frac{1}{x^3}+\frac{1}{y^3}=m\end{cases}\) \(\Leftrightarrow\begin{cases}xy\left(x+y\right)=x^2-xy+y^2\\\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x^3y^3}=m\end{cases}\)

                                              \(\Leftrightarrow\begin{cases}xy\left(x+y\right)=x^2-xy+y^2\\\frac{xy\left(x+y\right)}{x^3y^3}=m\end{cases}\)

                                               \(\Leftrightarrow\begin{cases}xy\left(x+y\right)=x^2-xy+y^2\\\frac{\left(x+y\right)^2}{x^2y^2}=m\end{cases}\)  (1)

Đặt \(S=x+y\)

       \(P=xy;\left(S^2\ge4P\right)\) . Hệ (1) trở thành \(\begin{cases}SP=S^2-3P\\\frac{S^2}{P^2}=m\end{cases}\) (2)

Hệ (1) có nghiệm \(\left(x,y\right)\) với \(x\ne0;y\ne0\) khi và chỉ khi hệ (2) có nghiệm (S,P) thỏa mãn \(S^2\ge4P;P\ne0\) do

\(S^2-3P=x^2-xy+y^2=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}>0\) với mọi  \(x\ne0;y\ne0\)  nên SP > 0 \(\Rightarrow\frac{S}{P}>0\)

Như thế :

* Nếu \(m\le0\) thì hệ (2) vô nghiệm

* Nếu m > 0 thì

\(\left(2\right)\Leftrightarrow\begin{cases}SP=S^2-3P\\S=\sqrt{m}P\end{cases}\)\(\Leftrightarrow\begin{cases}\sqrt{m}P^2=mP^2-3P\\S=\sqrt{m}P\end{cases}\)

      \(\Leftrightarrow\begin{cases}\left(m-\sqrt{m}\right)P^2-3P=0\\S=\sqrt{m}P\end{cases}\) do \(P\ne0\)  \(\Leftrightarrow\begin{cases}\left(m-\sqrt{m}\right)P=3\\S=\sqrt{m}P\end{cases}\) (3)

Hệ (3) có nghiệm khi và chỉ khi \(m-\sqrt{m}\ne0\Leftrightarrow m\ne1\), lúc này từ (3) ta có :

\(P=\frac{3}{m-\sqrt{m}}\Rightarrow S=\frac{3}{\sqrt{m}-1}\)

Hệ (2) có nghiệm (S;P) thỏa mãn \(S^2\ge4;P\ne0\) khi và chỉ khi:

\(0< m\ne1\) và \(\frac{9}{\left(\sqrt{m}-1\right)^2}\ge\frac{12}{\sqrt{m}\left(\sqrt{m}-1\right)}\)

\(\Leftrightarrow0< m\ne1\) và \(3\sqrt{m}\ge4\left(\sqrt{m}-1\right)\)

\(\Leftrightarrow0< m\ne1\) và \(\sqrt{m}\le4\Leftrightarrow m\in\) (0;16] \ \(\left\{1\right\}\)

Tập giá trị của A là  (0;16] \ \(\left\{1\right\}\) suy ra max A = 16 ( không tồn tại min A)

 

 

 
15 tháng 4 2016

Theo giả thiết ta có : \(x+yz=yz-z-1=\left(z-1\right)\left(y+1\right)=\left(x+y\right)\left(y+1\right)\)

Tương tự : \(y+zx=\left(x+y\right)\left(x+1\right)\)

Và \(z+xy=\left(x+1\right)\left(y+1\right)\)

Nên \(P=\frac{x}{\left(x+y\right)\left(y+1\right)}+\frac{y}{\left(x+y\right)\left(x+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)

            \(=\frac{x^2+y^2+x+y}{\left(x+y\right)\left(x+1\right)\left(y+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)

Ta có \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\left(x+1\right)\left(y+1\right)\le\frac{\left(x+y+2\right)^2}{4}\)

nên \(P\ge\frac{2\left(x+y\right)^2+4\left(x+y\right)}{\left(x+y+2\right)^2\left(x+y\right)}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}=\frac{2\left(x+y\right)+4}{\left(x+y+2\right)^2}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}\)

                                                       \(=\frac{2}{z+1}+\frac{4\left(z^2+2\right)}{\left(z+1\right)^2}=f\left(z\right);z>1\)

Lập bảng biến thiên ta được \(f\left(z\right)\ge\frac{13}{4}\) hay min \(P=\frac{13}{4}\) khi \(\begin{cases}z=3\\x=y=1\end{cases}\)

6 tháng 4 2016

\(\left(x^3+y^3\right)\left(x+y\right)=xy\left(1-x\right)\left(1-y\right)\Leftrightarrow\left(\frac{x^2}{y}+\frac{y^2}{x}\right)\left(x+y\right)=\left(1-x\right)\left(1-y\right)\left(1\right)\)

Ta có : \(\left(\frac{x^2}{y}+\frac{y^2}{x}\right)\left(x+y\right)\ge4xy\)

và \(\left(1-x\right)\left(1-y\right)=1-\left(x+y\right)+xy\le1-2\sqrt{xy}+xy\)

\(\Rightarrow1-2\sqrt{xy}+xy\ge4xy\Leftrightarrow0\) <\(xy\le\frac{1}{9}\)

Dễ chứng minh : \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\le\frac{1}{1+xy};\left(x,y\in\left(0;1\right)\right)\)

\(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}\le\sqrt{2\left(\frac{1}{1+x^2}+\frac{1}{1+y^2}\right)}\le\sqrt{2\left(\frac{2}{1+xy}\right)}=\frac{2}{\sqrt{1+xy}}\)

\(3xy-\left(x^2+y^2\right)=xy-\left(x-y\right)^2\le xy\)

\(\Rightarrow P\le\frac{2}{\sqrt{1+xy}}+xy=\frac{2}{\sqrt{1+t}}+t\)\(\left(t=xy\right)\), (0<\(t\le\frac{1}{9}\)

Xét hàm số :

\(f\left(t\right)=\frac{2}{\sqrt{t+1}}+t\) ,  (0<\(t\le\frac{1}{9}\)

Ta có Max \(f\left(t\right)=f\left(\frac{1}{9}\right)=\frac{6\sqrt{10}}{10}+\frac{1}{9}\)\(t\in\left(0;\frac{1}{9}\right)\)