\(\left\{{}\begin{matrix}\sqrt[3]{x^3-7}+y^2-2y+3=0\\x^2+x^2y^2-2y=0...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 5 2018

Lời giải:

Ta có:

\(\left\{\begin{matrix} \sqrt[3]{x^3-7}+y^2-2y+3=0\\ x^2+x^2y^2-2y=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \sqrt[3]{x^3-7}+2+(y^2-2y+1)=0\\ x^2(y^2+1)=2y\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{x^3+1}{\sqrt[3]{(x^3-7)^2}+2\sqrt[3]{x^3-7}+4}+(y-1)^2=0(1)\\ x^2=\frac{2y}{y^2+1}(2)\end{matrix}\right.\)

Từ \((2)\Rightarrow 1-x^2=\frac{y^2+1-2y}{y^2+1}\Leftrightarrow (1-x)(1+x)=\frac{(y-1)^2}{y^2+1}\)

Thay vào (1):

\(\frac{x^3+1}{\sqrt[3]{(x^3-7)^2}+2\sqrt[3]{x^3-7}+4}+(1-x)(1+x)(y^2+1)=0\)

\(\Leftrightarrow (x+1)\left[\frac{x^2-x+1}{\sqrt[3]{(x^3-7)^2}+2\sqrt[3]{x^3-7}+4}+(1-x)(y^2+1)\right]=0\)

+) Nếu \(x+1=0\Rightarrow x=-1\Rightarrow y=1\) (thay vào)

+) Nếu biểu thức trong ngoặc lớn bằng $0$

\(\Rightarrow (x-1)(y^2+1)=\frac{x^2-x+1}{\sqrt[3]{(x^3-7)^2}+2\sqrt[3]{x^3-7}+4}>0\)

\(\Rightarrow x>1\) \(\Rightarrow x^2>1\) hay \(\frac{2y}{y^2+1}>1\) hay \(0>(y-1)^2\) (vô lý)

Vậy hpt có nghiệm duy nhất \((x,y)=(-1,1)\)

\(\Rightarrow Q=x^{2008}+y^{2008}=(-1)^{2008}+1^{2008}=2\)

NV
16 tháng 6 2020

Xét pt: \(x^3+2y^2-4y+3=0\)

\(\Leftrightarrow-1-x^3=2\left(y-1\right)^2\ge0\)

\(\Rightarrow x^3\le-1\Rightarrow x\le-1\) (1)

Xét pt: \(x^2y^2-2y+x^2=0\)

\(\Delta'=1-x^2.x^2=1-x^4\ge0\Rightarrow x^2\le1\)

\(\Rightarrow-1\le x\le1\Rightarrow x\ge-1\) (2)

(1); (2) \(\Rightarrow x=-1\)

Thay vào pt đầu \(\Rightarrow y=1\)

\(\Rightarrow P=2\)

Giải hệ phương trình: 1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\) 2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\) 3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\) 4....
Đọc tiếp

Giải hệ phương trình:

1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)

2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)

3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)

4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)

5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)

6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)

7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)

0
31 tháng 10 2019

1/PT (1) cho ta nhân tử x - y - 1:)

\(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\left(1\right)\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\left(2\right)\end{matrix}\right.\)

ĐK: \(x\le5;y\le4\); \(2x+y+5\ge0;3x+2y+11\ge0\)

PT (1) \(\Leftrightarrow\left(17-3x\right)\left(\sqrt{5-x}-\sqrt{4-y}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)

\(\Leftrightarrow\left(3x-17\right)\left(\frac{x-y-1}{\sqrt{5-x}+\sqrt{4-y}}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)

\(\Leftrightarrow\left(x-y-1\right)\left(\frac{3x-17}{\sqrt{5-x}+\sqrt{4-y}}-3\sqrt{4-y}\right)=0\)

Dễ thấy cái ngoặc to < 0

Do đó x= y + 1

Thay xuống PT (2):\(y^2+8y+20=2\sqrt{3y+7}+3\sqrt{5y+14}\)\(\left(y+1\right)\left(y+2\right)=y^2+3y+2\)

ĐK: \(y\ge-\frac{7}{3}\) (để các căn thức được thỏa mãn)

PT (2) \(\Leftrightarrow y^2+3y+2+2\left(y+3-\sqrt{3y+7}\right)+3\left(y+4-\sqrt{5y+14}\right)=0\)

\(\Leftrightarrow\left(y^2+3y+2\right)\left(1+\frac{2}{y+3+\sqrt{3y+7}}+\frac{3}{y+4+\sqrt{5y+14}}\right)=0\)

Cái ngoặc to > 0 =>...

P/s: Is that true? Ko đúng thì chịu thua-_- Mất nửa tiếng đồng hồ để gõ bài này đấy:(

31 tháng 10 2019

2/ĐK: \(x\ge-y;y\ge0\)

PT (1) \(\Leftrightarrow x\left(x+y\right)+\sqrt{x+y}=2y^2+\sqrt{2y}\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+y\left(x-y\right)+\sqrt{x+y}-\sqrt{2y}=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}\right)=0\)

Cái ngoặc to \(\ge y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}>0\).

Do đó x = y \(\ge0\)

Thay xuống pt dưới: \(x^3-5x^2+14x-4=6\sqrt[3]{x^2-x+1}\)

Lập phương hai vế lên ra pt bậc 6, tuy nhiên cứ yên tâm, nghiệm rất đẹp: x = 1:)

Em đưa kết quả luôn: \(\left(x-1\right)\left(x^2-4x+7\right)\left(x^6-10x^5+56x^4-160x^3+272x^2-64x+40\right)=0\)

P/s: khúc cuối em ko còn cách nào khác nên đành lập phương:((