K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2018

Ta có:
\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)

\(\Leftrightarrow2=x^2-2+\dfrac{1}{x^2}+x^2-xy+\dfrac{y^2}{4}+xy\)

\(\Leftrightarrow2=\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2+xy\)

Vì : \(\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2\ge0\)

\(\Rightarrow xy\le2\)

Vậy GTLN của xy=2 \(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\x-\dfrac{y}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\Rightarrow y=2\\x=-1\Rightarrow y=-2\end{matrix}\right.\)

NV
19 tháng 1

Đề bài sai, đề đúng thì phân thức đằng sau dấu chia phải là:

\(\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)

NV
18 tháng 5 2021

\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{x^2y^2}=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2+2xy}{x^2y^2}\)

\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2}{x^2y^2}+\dfrac{2}{xy}\ge2\sqrt{\dfrac{\left(x-y\right)^2}{\left(x-y\right)^2x^2y^2}}+\dfrac{2}{xy}=\dfrac{2}{\left|xy\right|}+\dfrac{2}{xy}\ge\dfrac{2}{xy}+\dfrac{2}{xy}=\dfrac{4}{xy}\)

3 tháng 4 2022

Bài 3:

\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)

\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)

 

3 tháng 4 2022

-Tham khảo:

undefined

AH
Akai Haruma
Giáo viên
27 tháng 4 2022

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$

$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$

Áp dụng BĐT AM-GM:

$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$

$\Rightarrow \frac{2}{xy}\geq 8$

Cộng 2 BĐT trên lại:

$P\geq 16+8=24$

Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$

AH
Akai Haruma
Giáo viên
27 tháng 4 2022

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$

$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$

Áp dụng BĐT AM-GM:

$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$

$\Rightarrow \frac{2}{xy}\geq 8$

Cộng 2 BĐT trên lại:

$P\geq 16+8=24$

Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$

A>=1/(1+xy)=1/2

Dấu = xảy ra khi x=y=1

6 tháng 12 2017

Ta có: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

=> \(\left(x^2+\frac{y^2}{4}\right)+\left(x^2+\frac{1}{x^2}\right)=4\)

Lại có: \(x^2+\frac{y^2}{4}\ge2.x.\frac{y}{2}=xy\) Và \(x^2+\frac{1}{x^2}\ge2.x.\frac{1}{x}=2\)

=> \(4\ge xy+2\)=> \(2\ge xy\)

=> \(A=2016+xy\le2016+2=2018\)

=> Amin=2018

3 tháng 10 2020

\(\sqrt[]{\sqrt{ }\frac{ }{ }\sqrt[]{}3\hept{\begin{cases}\\\\\end{cases}}3\frac{ }{ }\sqrt{ }\cos\hept{\begin{cases}\\\\\end{cases}}\Omega3\cong}\)

19 tháng 3 2018

Ta có :

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)

\(\Rightarrow\left(x^2+\dfrac{1}{x^2}-2\right)+\left(x^2+\dfrac{y^2}{4}-xy\right)=2-xy\)

\(\Rightarrow\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2=2-xy\)

Ta có:

\(\left(x-\dfrac{1}{x}\right)^2\ge0\forall x\)

\(\left(x-\dfrac{y}{2}\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2\ge0\forall x,y\)

\(\Rightarrow2-xy\ge0\forall x,y\)

\(\Rightarrow xy\le2\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\x-\dfrac{y}{2}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{x}\\x=\dfrac{y}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=1\\y=2x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\end{matrix}\right.\)

Vậy (x;y) nguyên thỏa mãn là : (1;2);(-1;-2)