Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai, đề đúng thì phân thức đằng sau dấu chia phải là:
\(\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{x^2y^2}=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2+2xy}{x^2y^2}\)
\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2}{x^2y^2}+\dfrac{2}{xy}\ge2\sqrt{\dfrac{\left(x-y\right)^2}{\left(x-y\right)^2x^2y^2}}+\dfrac{2}{xy}=\dfrac{2}{\left|xy\right|}+\dfrac{2}{xy}\ge\dfrac{2}{xy}+\dfrac{2}{xy}=\dfrac{4}{xy}\)
Bài 3:
\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$
$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$
Áp dụng BĐT AM-GM:
$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$
$\Rightarrow \frac{2}{xy}\geq 8$
Cộng 2 BĐT trên lại:
$P\geq 16+8=24$
Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$
$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$
Áp dụng BĐT AM-GM:
$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$
$\Rightarrow \frac{2}{xy}\geq 8$
Cộng 2 BĐT trên lại:
$P\geq 16+8=24$
Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$
Ta có: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
=> \(\left(x^2+\frac{y^2}{4}\right)+\left(x^2+\frac{1}{x^2}\right)=4\)
Lại có: \(x^2+\frac{y^2}{4}\ge2.x.\frac{y}{2}=xy\) Và \(x^2+\frac{1}{x^2}\ge2.x.\frac{1}{x}=2\)
=> \(4\ge xy+2\)=> \(2\ge xy\)
=> \(A=2016+xy\le2016+2=2018\)
=> Amin=2018
\(\sqrt[]{\sqrt{ }\frac{ }{ }\sqrt[]{}3\hept{\begin{cases}\\\\\end{cases}}3\frac{ }{ }\sqrt{ }\cos\hept{\begin{cases}\\\\\end{cases}}\Omega3\cong}\)
Ta có :
\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)
\(\Rightarrow\left(x^2+\dfrac{1}{x^2}-2\right)+\left(x^2+\dfrac{y^2}{4}-xy\right)=2-xy\)
\(\Rightarrow\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2=2-xy\)
Ta có:
\(\left(x-\dfrac{1}{x}\right)^2\ge0\forall x\)
\(\left(x-\dfrac{y}{2}\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2\ge0\forall x,y\)
\(\Rightarrow2-xy\ge0\forall x,y\)
\(\Rightarrow xy\le2\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\x-\dfrac{y}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{x}\\x=\dfrac{y}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=1\\y=2x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\end{matrix}\right.\)
Vậy (x;y) nguyên thỏa mãn là : (1;2);(-1;-2)
Ta có:
\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)
\(\Leftrightarrow2=x^2-2+\dfrac{1}{x^2}+x^2-xy+\dfrac{y^2}{4}+xy\)
\(\Leftrightarrow2=\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2+xy\)
Vì : \(\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2\ge0\)
\(\Rightarrow xy\le2\)
Vậy GTLN của xy=2 \(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\x-\dfrac{y}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\Rightarrow y=2\\x=-1\Rightarrow y=-2\end{matrix}\right.\)