K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2020

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\le\frac{2}{1+ab}\) (1)

<=> \(\frac{1+a^2+b^2+1}{\left(1+a^2\right)\left(1+b^2\right)}\le\frac{2}{1+ab}\)

>=> \(\frac{4}{\left(1+a^2\right)\left(1+b^2\right)}\le\frac{2}{1+ab}\)

<=> 2 ( 1 + ab) \(\le\)1 + a^2 + b^2 + a^2b^2

<=> a^2 b^2 -2ab + 1 \(\ge\)

<=> (ab - 1 ) ^2  \(\ge\)0 đúng  với mọi số thực dương a, b 

vậy (1) đúng với mọi số thực dương a, b 

Dấu "=" xảy ra <=> ab = 1 và a^2 + b^2 = 2 <=> a = b = 1

18 tháng 4 2017

ta co:

      a-b=a^3+b^3

a-b-b^3=a^3

Mà một số luôn nhỏ hơn hoặc bằng chính nó lũy thừa 3

Nhưng a-b-b^3=a^3 nên b=0

Mà a=a^3 suy ra a=1

28 tháng 4 2024

nếu nhưtrong trường hợp a<= 1 thì a >= a^3 chứ?

14 tháng 9

cíu toi với

cần gấp lắm các bạn

Từ giả thiết 𝑎 3 + 𝑏 3 = 𝑎 − 𝑏 a 3 +b 3 =a−b và 𝑎 , 𝑏 > 0 a,b>0 suy ra 𝑎 − 𝑏 > 0 a−b>0, tức 𝑎 > 𝑏 a>b. Viết lại phương trình dưới dạng ( 𝑎 3 − 𝑎 ) + ( 𝑏 3 + 𝑏 ) = 0 ⟹ 𝑎 ( 𝑎 2 − 1 ) + 𝑏 ( 𝑏 2 + 1 ) = 0. (a 3 −a)+(b 3 +b)=0⟹a(a 2 −1)+b(b 2 +1)=0. Vì 𝑏 ( 𝑏 2 + 1 ) > 0 b(b 2 +1)>0 (do 𝑏 > 0 b>0), nên phải có 𝑎 ( 𝑎 2 − 1 ) < 0 a(a 2 −1)<0. Do 𝑎 > 0 a>0 nên 𝑎 2 − 1 < 0 a 2 −1<0, tức 𝑎 2 < 1 ⇒ 0 < 𝑎 < 1. a 2 <1⇒0<a<1. Từ phương trình ban đầu ta cũng có 𝑏 ( 𝑏 2 + 1 ) = 𝑎 − 𝑎 3 . b(b 2 +1)=a−a 3 . Vì 𝑏 2 + 1 > 1 b 2 +1>1 nên 𝑏 = 𝑎 − 𝑎 3 𝑏 2 + 1 < 𝑎 − 𝑎 3 . b= b 2 +1 a−a 3 <a−a 3 . Do đó 𝑎 + 𝑏 < 𝑎 + ( 𝑎 − 𝑎 3 ) = 2 𝑎 − 𝑎 3 . a+b<a+(a−a 3 )=2a−a 3 . Nhân hai vế với 𝑎 > 0 a>0 được 𝑎 ( 𝑎 + 𝑏 ) < 𝑎 ( 2 𝑎 − 𝑎 3 ) = 2 𝑎 2 − 𝑎 4 . a(a+b)<a(2a−a 3 )=2a 2 −a 4 . Xét hàm 𝑓 ( 𝑎 ) = 2 𝑎 2 − 𝑎 4 f(a)=2a 2 −a 4 trên khoảng 0 < 𝑎 < 1 0<a<1. Ta có 𝑓 ′ ( 𝑎 ) = 4 𝑎 − 4 𝑎 3 = 4 𝑎 ( 1 − 𝑎 2 ) > 0 (v ı ˋ   0 < 𝑎 < 1 ) , f ′ (a)=4a−4a 3 =4a(1−a 2 )>0(v ı ˋ  0<a<1), nên 𝑓 f tăng trên ( 0 , 1 ) (0,1) và do đó 𝑓 ( 𝑎 ) < 𝑓 ( 1 ) = 1 f(a)<f(1)=1. Kết hợp với bất đẳng thức trên suy ra 𝑎 ( 𝑎 + 𝑏 ) < 1. a(a+b)<1. Trở về mục tiêu, từ phân tích ban đầu (chia cả hai vế 𝑎 3 + 𝑏 3 = 𝑎 − 𝑏 a 3 +b 3 =a−b cho 𝑎 + 𝑏 a+b) 𝑎 2 − 𝑎 𝑏 + 𝑏 2 = 𝑎 − 𝑏   𝑎 + 𝑏   = 1 − 2 𝑏 𝑎 + 𝑏 , a 2 −ab+b 2 = a+b a−b =1− a+b 2b , nên 𝑎 2 + 𝑏 2 + 𝑎 𝑏 = ( 𝑎 2 − 𝑎 𝑏 + 𝑏 2 ) + 2 𝑎 𝑏 = 1 − 2 𝑏 𝑎 + 𝑏 + 2 𝑎 𝑏 . a 2 +b 2 +ab=(a 2 −ab+b 2 )+2ab=1− a+b 2b +2ab. Vì 𝑎 ( 𝑎 + 𝑏 ) < 1 a(a+b)<1 tương đương 𝑎 < 1 𝑎 + 𝑏 a< a+b 1 , suy ra 2 𝑎 𝑏 < 2 𝑏 𝑎 + 𝑏 2ab< a+b 2b . Do đó 1 − 2 𝑏 𝑎 + 𝑏 + 2 𝑎 𝑏 < 1 , 1− a+b 2b +2ab<1, tức   𝑎 2 + 𝑏 2 + 𝑎 𝑏 < 1   . a 2 +b 2 +ab<1 .

19 tháng 3 2019

\(a;b>0\Rightarrow a^3-b^3< a^3+b^3\)

Mà \(a^3+b^3=a-b\)

\(\Rightarrow a^3-b^3< a-b\)

\(\Leftrightarrow\frac{a^3-b^3}{a-b}< \frac{a-b}{a-b}\)(vì a - b = a3 + b> 0 với a;b > 0)

\(\Leftrightarrow a^2+ab+b^2< 1\)

13 tháng 8 2023

giúp mình bạn ơi

 

24 tháng 4 2017

Do a,b đều dương nên a^3 + b^3 dương => a - b dương 

Nhân cả hai vế của bất đẳng thức cần chứng minh với a - b ta được : 

    \(a^2+b^2+ab<1\) 

<=> \(\left(a-b\right)\left(a^2+b^2+ab\right) 

<=> \(a^3-b^3=a^3+b^3\) 

do b dương nên b^3 > 0 => bất đẳng thức cuối cùng đúng

Vậy bất đẳng thức đã cho là đúng (đpcm)

24 tháng 4 2017

bổ sung : do a - b dương nên khi nhân a - b vào cả hai vế thì BĐT không đổi chiều.