Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x/y+y/x=x^2+y^2/xy sử dụng bdt cosi =>x^2+y^2/xy+xy/x^2+y^2>=1
ta có: \(M=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\ge2\sqrt{\frac{x^2+y^2}{xy}\cdot\frac{xy}{x^2+y^2}}=2\cdot\sqrt{1}=2\cdot1=2.\)
(Ở đây mình áp dụng BĐT Cauchy: \(a+b\ge2\sqrt{ab}\)nhé!)
Học tốt! ^3^
Ta có: \(M=\frac{9}{xy}+\frac{17}{x^2+y^2}\)
\(=\frac{18}{2xy}+\frac{17}{x^2+y^2}\)
\(=\left(\frac{17}{x^2+y^2}+\frac{17}{2xy}\right)+\frac{1}{2xy}\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(x,y>0), ta có:
\(M\ge\frac{17.4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}=\frac{68}{256}+\frac{2}{256}=\frac{35}{128}\)
Dấu "=" xảy ra khi: \(x=y=8\)
Áp dụng BĐT AM-GM ta có:
\(1=\frac{3}{x}+\frac{2}{y}\ge2.\sqrt{\frac{6}{xy}}\)
\(\Leftrightarrow1^2\ge4.\frac{6}{xy}\)
\(\Leftrightarrow1\ge\frac{24}{xy}\)
\(\Leftrightarrow xy\ge24\)
Dấu " = " xảy ra \(\Leftrightarrow\frac{3}{x}=\frac{2}{y}=\frac{1}{2}\Leftrightarrow\hept{\begin{cases}x=6\\y=4\end{cases}}\)
Vậy \(xy_{min}=24\Leftrightarrow\hept{\begin{cases}x=6\\y=4\end{cases}}\)
T nghĩ ra câu b rồi nhé Pain,bớt xạo lz!
b) Từ \(\frac{3}{x}+\frac{2}{y}=1\),ta có: \(x+y=1\left(x+y\right)=\left(\frac{3}{x}+\frac{2}{y}\right)\left(x+y\right)\)
Áp dụng BĐT Bunhiacopxki,ta có: \(\left(\frac{3}{x}+\frac{2}{y}\right)\left(x+y\right)\ge\left(\sqrt{\frac{3}{x}.x}+\sqrt{\frac{2}{y}.y}\right)\)
\(=\left(\sqrt{3}+\sqrt{2}\right)^2=5+2\sqrt{6}\)
Vậy \(Min_{x+y}=5+2\sqrt{6}\Leftrightarrow\hept{\begin{cases}x=3+\sqrt{6}\\y=2+\sqrt{6}\end{cases}}\)
\(\sqrt{x^2+2024}=\sqrt{x^2+xy+yz+zx}=\sqrt{\left(x+y\right)\left(z+x\right)}\ge\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}=\sqrt{xy}+\sqrt{xz}\)
Tương tự: \(\sqrt{y^2+2024}\ge\sqrt{xy}+\sqrt{yz}\)
\(\sqrt{z^2+2024}\ge\sqrt{xz}+\sqrt{yz}\)
Cộng vế:
\(P\ge\dfrac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}=2\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{2024}{3}\)
Bài 2:
a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-14x=-4\)
hay \(x=\dfrac{2}{7}\)
b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)
\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)
\(\Leftrightarrow x^3=-8\)
hay x=-2
Bài 1:
a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)
\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)
\(=xy\)
=1
b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)
\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)
\(=x^2-y^2\)
\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)
Lời giải:
Cách 1:
Áp dụng BĐT S.Vacxo ta có:
\(\frac{1}{xy+1}+\frac{1}{1+yz}+\frac{1}{1+xz}\geq \frac{9}{1+xy+1+yz+1+xz}=\frac{9}{3+xy+yz+xz}(1)\)
Theo BĐT Cauchy ta có bổ đề quen thuộc:
\(xy+yz+xz\leq x^2+y^2+z^2\leq 3(2)\)
Từ \((1);(2)\Rightarrow \frac{1}{xy+1}+\frac{1}{yz+1}+\frac{1}{xz+1}\geq \frac{9}{3+xy+yz+xz}\geq \frac{9}{3+3}=\frac{3}{2}\)
Vậy \(P_{\min}=\frac{3}{2}\Leftrightarrow x=y=z=1\)
Cách 2:
Áp dụng BĐT Cauchy cho các số dương:
\(\frac{1}{xy+1}+\frac{xy+1}{4}\geq 2.\sqrt{\frac{1}{xy+1}.\frac{xy+1}{4}}=1\)
\(\frac{1}{yz+1}+\frac{yz+1}{4}\geq 2.\sqrt{\frac{1}{yz+1}.\frac{yz+1}{4}}=1\)
\(\frac{1}{xz+1}+\frac{xz+1}{4}\geq 2.\sqrt{\frac{1}{xz+1}.\frac{xz+1}{4}}=1\)
Cộng tất cả các BĐT trên theo vế và rút gọn:
\(\Rightarrow \frac{1}{xy+1}+\frac{1}{yz+1}+\frac{1}{xz+1}\geq \frac{9-(xy+yz+xz)}{4}\geq \frac{9-3}{4}=\frac{3}{2}\)
Vậy \(P_{\min}=\frac{3}{2}\)