Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sigma\frac{a}{1+b-a}=sigma\frac{a^2}{a+ab-a^2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=1\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
\(\frac{1}{b^2+c^2}=\frac{1}{1-a^2}=1+\frac{a^2}{b^2+c^2}\le1+\frac{a^2}{2bc}\)
Tương tự cộng lại quy đồng ta có đpcm
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Lời giải:
Áp dụng bđt AM-GM:
\(a^2+2b^2+3=(a^2+b^2)+(b^2+1)+2\geq 2(ab+b+1)\)
\(\Rightarrow \frac{1}{a^2+2b^2+3}\leq \frac{1}{2(ab+b+1)}\). Tương tự với các phân thức còn lại:
\(\Rightarrow 2\text{VT}\leq \frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=A\)
Dựa vào đk \(abc=1\) dễ thấy \(A=1\).
Cách CM:
\(A=\frac{c}{1+bc+c}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=\frac{c+1}{bc+c+1}+\frac{bc}{c+1+bc}=1\) (đpcm)
\(\Rightarrow \text{VT}\leq \frac{1}{2}\)
Dấu bằng xảy ra khi \(a=b=c=1\)
Lời giải:
Đặt \(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)
Ta có \(A=(a-\frac{ab^2}{1+b^2})+(b-\frac{bc^2}{1+c^2})+(c-\frac{ca^2}{1+a^2})=3-\left ( \frac{ab^2}{1+b^2}+\frac{bc^2}{1+c^2}+\frac{ca^2}{1+a^2} \right )\)
Áp dụng bất đẳng thức AM-GM:
\(A\geq 3-\left ( \frac{ab^2}{2b}+\frac{bc^2}{2c}+\frac{ca^2}{3a} \right )=3-\frac{1}{2}(ab+bc+ac)\)
Cũng theo AM-GM
\(9=(a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq 3\)
\(\Rightarrow A\geq 3-\frac{3}{2}=\frac{3}{2}\)
Dấu $=$ xảy ra khi \(a=b=c=1\)
1. Không dịch được đề
2. \(\left(m+2\right)x^2-6x+1\le0\) \(\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+2< 0\\\Delta'=9-\left(m+2\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m\ge7\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
3. \(P=\frac{a^2+b^2}{ab}+\frac{ab}{a^2+b^2}=\frac{a^2+b^2}{4ab}+\frac{ab}{a^2+b^2}+\frac{3\left(a^2+b^2\right)}{4ab}\)
\(P\ge2\sqrt{\frac{ab\left(a^2+b^2\right)}{4ab\left(a^2+b^2\right)}}+\frac{6ab}{4ab}=\frac{5}{2}\)
Dấu "=" xảy ra khi \(a=b\)
Lời giải:
Áp dụng BĐT AM-GM:
$4abc+4abc+\frac{1}{8a^2}+\frac{1}{8b^2}+\frac{1}{8c^2}\geq 5\sqrt[5]{\frac{1}{32}}=\frac{5}{2}(1)$
Áp dụng BĐT Cauchy_Schwarz:
$\frac{7}{8}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\geq \frac{7}{8}.\frac{9}{a^2+b^2+c^2}\geq \frac{7}{8}.\frac{9}{\frac{3}{4}}=\frac{21}{2}(2)$
Từ $(1);(2)\Rightarrow P\geq 13$
Vậy $P_{\min}=13$ khi $a=b=c=\frac{1}{2}$
Bài 4:
Áp dụng bất đẳng thức Cauchy-shwarz dạng engel ta có:
\(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=\dfrac{9}{\left(a+b+c\right)^2}=\dfrac{9}{9}=1\)
Dấu " = " xảy ra khi a = b = c = 1
\(\Rightarrowđpcm\)
Bài 1:
Ta có:
\(a^2+b^2-\frac{(a+b)^2}{2}=\frac{2(a^2+b^2)-(a+b)^2}{2}=\frac{(a-b)^2}{2}\geq 0\)
\(\Rightarrow a^2+b^2\geq \frac{(a+b)^2}{2}=\frac{2^2}{2}=2\)
(đpcm)
Dấu "=" xảy ra khi $a=b=1$
Ta có: \(\frac{1}{a+b}+\frac{1}{b+c}\ge2\sqrt{\frac{1}{a+b}\frac{1}{b+c}}=2\frac{1}{\sqrt{\left(a+b\right)\left(b+c\right)}}\ge\frac{4}{a+2b+c}\)
Tương tự có: \(\frac{1}{b+c}+\frac{1}{a+c}\ge\frac{4}{a+2c+b}\)
\(\frac{1}{a+b}+\frac{1}{a+c}\ge\frac{4}{b+2a+c}\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{c+b}+\frac{1}{a+c}\ge2\left(\frac{1}{b+2a+c}+\frac{1}{a+2b+c}+\frac{1}{b+2c+a}\right)\)
Ta CM: \(\frac{1}{b+2a+c}\ge\frac{6}{a^2+63}\). Thật vậy:
\(\frac{1}{b+2a+c}\ge\frac{6}{a^2+63}\)\(\Leftrightarrow a^2+63\ge6b+12a+6c\)\(\Leftrightarrow2a^2+b^2+c^2+36-6b-12a-6c\ge0\)
\(\Leftrightarrow2\left(a-3\right)^2+\left(b-3\right)^2+\left(c-3\right)^2\ge0\) ( luôn đúng)
Dấu '=' xảy ra <=> a=b=c=3
Vậy \(\frac{1}{b+2a+c}+\frac{1}{a+2b+c}+\frac{1}{b+2c+a}\ge\frac{6}{a^2+63}+\frac{6}{b^2+63}+\frac{6}{c^2+63}\)
=> đpcm
UCT nào
Ta chứng minh rằng: \(\dfrac{1}{a}+a+1\ge\dfrac{3}{4}a+2\)
Thật vậy, ta có: \(\dfrac{1}{a}+a+1=\dfrac{3}{4}a+\dfrac{1}{4}a+\dfrac{1}{a}+1\ge\dfrac{3}{4}a+2\sqrt{\dfrac{1}{4}a.\dfrac{1}{a}}+1=\dfrac{3}{4}a+2\)
\(\Rightarrow\left(\dfrac{1}{a}+a+1\right)^3\ge\left(\dfrac{3}{4}a+2\right)^3\)
Tương tự: \(\left(\dfrac{1}{b}+b+1\right)^3\ge\left(\dfrac{3}{4}b+2\right)^3\)
Cộng vế theo vế, áp dụng AM-GMta được:
\(P\ge\left(\dfrac{3}{4}a+2\right)^3+\left(\dfrac{3}{4}b+2\right)^3=\left(\dfrac{3}{4}a+2+\dfrac{3}{4}b+2\right)-3\left(\dfrac{3}{4}a+2\right)\left(\dfrac{3}{4}b+2\right)\left(\dfrac{3}{4}a+2+\dfrac{3}{4}b+2\right)\)
\(P\ge\left[\dfrac{3}{4}\left(a+b\right)+4\right]^3-3.\dfrac{\left(\dfrac{3}{4}a+2+\dfrac{3}{4}b+2\right)^2}{4}.\left[\dfrac{3}{4}\left(a+b\right)+4\right]=85,75\)
GTNN của P là 85,75 khi a=b=2