K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2016

1. CMR với mọi số nguyên dương ta có:

A= x5/120 + x4/12 + 7x3/24 + 5x2/12 + x/5    luôn luôn dương

2. Cho a+ 3ab=14 và b+ 3a2b =13 . Tính: P= a2 _ b2

 

 

27 tháng 2 2016

bui hai nam: s cóp lại y nguyên đề trong phần trả lời z bn =='

8 tháng 2 2023

Theo đề ra, ta có:

\(a^2+b^2+c^2\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(=a^3+b^3+c^3+a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)

Theo BĐT Cô-si:

\(\left\{{}\begin{matrix}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)

Do vậy \(M\ge14\left(a^2+b^2+c^2\right)+\dfrac{3\left(ab+bc+ac\right)}{a^2+b^2+c^2}\)

Ta đặt \(a^2+b^2+c^2=k\)

Luôn có \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)

Vì thế nên \(k\ge\dfrac{1}{3}\)

Khi đấy:

\(M\ge14k+\dfrac{3\left(1-k\right)}{2k}=\dfrac{k}{2}+\dfrac{27k}{2}+\dfrac{3}{2k}-\dfrac{3}{2}\ge\dfrac{1}{3}.\dfrac{1}{2}+2\sqrt{\dfrac{27k}{2}.\dfrac{3}{2k}}-\dfrac{3}{2}=\dfrac{23}{3}\)

\(\Rightarrow Min_M=\dfrac{23}{3}\Leftrightarrow a=b=c=\dfrac{1}{3}\).

22 tháng 11 2017

Mk cx đang định hỏi câu này

NV
17 tháng 4 2022

\(\dfrac{bc^2}{a}+\dfrac{ca^2}{b}+\dfrac{ab^2}{c}=\dfrac{b^2c^2}{ab}+\dfrac{c^2a^2}{bc}+\dfrac{a^2b^2}{ac}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

Dấu "=" xảy ra khi \(a=b=c\)

AH
Akai Haruma
Giáo viên
10 tháng 2

Lời giải:
Ta có:

$a^3+b^3=(a+b)(a^2-ab+b^2)=(a+b)[(a^2+ab+b^2)-2ab]$

Áp dụng BĐT AM-GM:

$a^2+ab+b^2=(a^2+b^2)+ab\geq 2ab+ab=3ab$

$\Rightarrow 2ab\leq \frac{2(a^2+ab+b^2)}{3}$

$\Rightarrow a^2-ab+b^2=a^2+b^2+ab-2ab\geq a^2+b^2+ab- \frac{2}{3}(a^2+ab+b^2)=\frac{1}{3}(a^2+ab+b^2)$

$\Rightarrow a^3+b^3=(a+b)(a^2-ab+b^2)\geq \frac{1}{3}(a+b)(a^2+ab+b^2)$

$\Rightarrow \frac{a^3+b^3}{a^2+ab+b^2}\geq \frac{1}{3}(a+b)$

Hoàn toàn tương tự với các phân thức khác và cộng theo vế thu được:

$P\geq \frac{1}{3}(a+b)+\frac{1}{3}(b+c)+\frac{1}{3}(c+a)=\frac{2}{3}(a+b+c)$

$\geq \frac{2}{3}.3\sqrt[3]{abc}=2$

Vậy $P_{\min}=2$. Giá trị này đạt tại $a=b=c=1$

AH
Akai Haruma
Giáo viên
10 tháng 2

Lời giải:
Ta có:

$a^3+b^3=(a+b)(a^2-ab+b^2)=(a+b)[(a^2+ab+b^2)-2ab]$

Áp dụng BĐT AM-GM:

$a^2+ab+b^2=(a^2+b^2)+ab\geq 2ab+ab=3ab$

$\Rightarrow 2ab\leq \frac{2(a^2+ab+b^2)}{3}$

$\Rightarrow a^2-ab+b^2=a^2+b^2+ab-2ab\geq a^2+b^2+ab- \frac{2}{3}(a^2+ab+b^2)=\frac{1}{3}(a^2+ab+b^2)$

$\Rightarrow a^3+b^3=(a+b)(a^2-ab+b^2)\geq \frac{1}{3}(a+b)(a^2+ab+b^2)$

$\Rightarrow \frac{a^3+b^3}{a^2+ab+b^2}\geq \frac{1}{3}(a+b)$

Hoàn toàn tương tự với các phân thức khác và cộng theo vế thu được:

$P\geq \frac{1}{3}(a+b)+\frac{1}{3}(b+c)+\frac{1}{3}(c+a)=\frac{2}{3}(a+b+c)$

$\geq \frac{2}{3}.3\sqrt[3]{abc}=2$

Vậy $P_{\min}=2$. Giá trị này đạt tại $a=b=c=1$

25 tháng 3 2022

\(a+b\le2\) chứ em

26 tháng 3 2022

dạ