K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 8 2018

Lời giải:

Xét hiệu \(a+b-2\sqrt{ab}=(\sqrt{a}-\sqrt{b})^2\geq 0,\forall a,b>0\)

\(\Rightarrow S=a+b\geq 2\sqrt{ab}=2\sqrt{8}=4\sqrt{2}\)

Vậy $S_{\min}=4\sqrt{2}$

Dấu "=" xảy ra khi \(\sqrt{a}=\sqrt{b}\Leftrightarrow a=b=\sqrt{8}\)

P/s: đây cũng chính là nội dung của bất đẳng thức Cô-si: Với hai số không âm $a,b$ thì ta luôn có: \(a+b\geq 2\sqrt{ab}\)

27 tháng 8 2018

lớp 8 đầu năm đâu đã học bđt Cosi

29 tháng 8 2018

Ta có : \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\forall a;b\) ( điều này luôn đúng )

\(\Leftrightarrow\left(\sqrt{a}\right)^2-2\sqrt{a}.\sqrt{b}+\left(\sqrt{b}\right)^2\ge0\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

Theo GT , \(ab=8\)

\(\Rightarrow a+b\ge2\sqrt{8}=4\sqrt{2}\)

Dấu " = " xảy ra

\(\Leftrightarrow a=b=\sqrt{8}\)

Vậy \(S_{min}=a+b=4\sqrt{2}\Leftrightarrow a=b=\sqrt{8}\)

29 tháng 8 2018

Sửa ở phần đ/k a ; b

\(\forall a;b>0\)

23 tháng 5 2021

Ta có: P= \(2a+3b+\dfrac{1}{a}+\dfrac{4}{b}\) = \(\text{​​}\text{​​}(\dfrac{1}{a}+a)+\left(\dfrac{4}{b}+b\right)+\left(a+2b\right)\)

Ta thấy: \(\text{​​}\text{​​}(\dfrac{1}{a}+a)\ge2\sqrt{\dfrac{1}{a}\cdot a}=2\)

             \(\text{​​}\text{​​}\left(\dfrac{4}{b}+b\right)\ge2\sqrt{\dfrac{4}{b}\cdot b}=4\)

Do đó: P \(\ge2+4+5=11\)

Vậy: P(min)=11  khi:  \(\left\{{}\begin{matrix}\dfrac{1}{a}=a\\\dfrac{4}{b}=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right..\)

23 tháng 5 2021

\(Like\)hehe

10 tháng 7 2020

dcv_new 

\(\Sigma\frac{a^2}{pab+qca}\ge\frac{\left(a+b+c\right)^2}{\left(p+q\right)\left(ab+bc+ca\right)}\ge\frac{3}{p+q}\)

23 tháng 7 2020

2, ta có \(\sqrt{a}=\sqrt{\frac{a}{x}}\cdot\sqrt{x}\)

vậy ta được \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=\left(\sqrt{\frac{a}{x}}\cdot\sqrt{x}+\sqrt{\frac{b}{y}}\cdot\sqrt{y}+\sqrt{\frac{c}{z}}\cdot\sqrt{z}\right)^2\le\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\left(x+y+z\right)=S\)

dấu đẳng thức xảy ra khi \(\sqrt{x}:\sqrt{\frac{a}{x}}=\sqrt{y}:\sqrt{\frac{b}{y}}=\sqrt{z}:\sqrt{\frac{c}{z}}\Leftrightarrow\hept{\begin{cases}\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=1\\\frac{x}{\sqrt{a}}=\frac{y}{\sqrt{b}}=\frac{z}{\sqrt{c}}\end{cases}}\)

\(\Rightarrow x=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}};y=\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}};z=\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

vậy min (x+y+z)=\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\)

20 tháng 5 2018

Đề bài mik chép thiếu : Hãy tìm GTLN của S = x + y + z 

17 tháng 2 2016

kho qua, khong bt lam

12 tháng 3 2016

gio tay chiu thua

21 tháng 4 2016

Ai giúp tớ với, nhanh lên gấp lắm :(

21 tháng 4 2016

Ta sẽ chứng minh:

\(1^3+2^3+...+n^3=\left(1+2+3+...+n\right)^2\)

Đẳng thức trên có thể chứng minh bằng quy nạp.

Áp dụng ào bài toán cho ra cả phần a và b.

DD
25 tháng 7 2021

Do vai trò của \(a,b\)là như nhau nên giả sử \(a\ge b\).

Ta có nhận xét rằng \(ab\)lớn nhất khi giá trị của \(a\)và \(b\)bằng nhau hoặc \(a-b=1\).

Nếu \(a-b>1\): ta thay tích \(ab\)bởi tích \(\left(a-1\right)\left(b+1\right)\)được

\(\left(a-1\right)\left(b+1\right)-ab=ab+a-b-1-ab=a-b-1>0\)

do đó \(a-b\le1\).

Vì \(a,b\)là số tự nhiên mà \(a+b=2019\)là số lẻ nên \(P\)đặt max tại \(a-b=1\)

\(\Rightarrow\hept{\begin{cases}a=1010\\b=1009\end{cases}}\)

Vậy \(maxP=1010.1009\).

18 tháng 9 2017

a) giả sử 3 xe xuất phát cùng một lúc sau thồi gian t xe C ở giũa xe A và Xe B. ta có quãng đương 3 xe A,B,C đi lần lượt la S1=v1.t S2=v2.t S3=v3.t xeC đi hơn xe A một khoảng là S1'= (v3-v1)t xe B đi hơn xe C một khoảng là S2'= (v2-v3)t Hai khoảng cách trên bâng nhau => S1'=S2' chia 1 và 2 cho nhau ta có v3- v1 = v2-v3 => v3 = (v1+v2)/2.