Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Leftrightarrow a^2+2ab+b^2+2bc+c^2+2ca=a^2+b^2+c^2\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)
\(\Leftrightarrow ab+bc+ca=0\)
*\(a^2+2bc=a^2+bc-ca-ab=\left(a-c\right)\left(a-b\right)\)
Tương tự cho 2 cái còn lại.
Ta có:
\(C=\dfrac{a^2}{a^2+bc-ab-ca}+\dfrac{b^2}{b^2+ac-ab-bc}+\dfrac{c^2}{c^2+ab-bc-ca}\)
\(C=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}+\dfrac{b^2}{\left(a-b\right)\left(b-c\right)}+\dfrac{c^2}{\left(b-c\right)\left(a-c\right)}\)
Tới đây cứ việc quy đồng mẫu là được.
a3-4a2b-4b3+5ab2=0
==>(a-b)3 - b (a-b)2 =0
==>a-b = b ==> a=2b
thay a=2b vào biểu thức ta đc kết quả bằng 1
hình như mấy cái GP của Đinh Tuấn Việt là giả hay sao ấy nhỉ
Điệnthọi bé tý khi viết lời giải chẳng thẫy đề đâu. Vp (a+b)^3=bó tay
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Leftrightarrow ab+bc+ca=0\)
Ta có:
\(P=\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ac}+\dfrac{c^2}{c^2+2ab}\)
\(P=\dfrac{a^2}{a^2+bc-ab-ca}+\dfrac{b^2}{b^2+ac-ab-bc}+\dfrac{c^2}{c^2+ab-bc-ca}\)
\(P=\dfrac{a^2}{\left(a-c\right).\left(a-b\right)}-\dfrac{b^2}{\left(a-b\right).\left(b-c\right)}+\dfrac{c^2}{\left(b-c\right).\left(a-c\right)}\)
Rồi cứ quy đồng lên và rút gọn nha.
Bài 1:
a^2-5ab-6b^2=0
=>a^2-6ab+ab-6b^2=0
=>a*(a-6b)+b(a-6b)=0
=>(a-6b)(a+b)=0
=>a=-b hoặc a=6b
TH1: a=-b
\(A=\dfrac{-2b-b}{-3b-b}+\dfrac{5b+b}{-3b+b}=\dfrac{-3}{-4}+\dfrac{6}{-2}=\dfrac{3}{4}-3=-\dfrac{9}{4}\)
TH2: a=6b
\(A=\dfrac{12b-b}{18b-b}+\dfrac{5b-6b}{18b+b}=\dfrac{11}{17}+\dfrac{-1}{19}=\dfrac{192}{323}\)