K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a.b-a.c+b.c-c2=-1

a.b-a.c+b.c-c.c=-1

a.(b-c)+c.(b-c)=-1

(b-c).(a+c)=-1

Mà a;b;c\(\in\)Z

=>b-c=-1;a+c=1

 b=-1+c;a=1-c

=>a đối b

Hoặc b-c=1;a+c=-1

b=1+c;a=-1-c

=>a đối b

=>a;b đối nhau khi a.b-a.c+b.c-c2=-1

Chúc bn học tốt

12 tháng 1 2020

\(ab-ac+bc-c^2=-1\)\(\Leftrightarrow a\left(b-c\right)+c\left(b-c\right)=-1\)

\(\Leftrightarrow\left(a+c\right)\left(b-c\right)=-1=1.\left(-1\right)=\left(-1\right).1\)

mà \(1+\left(-1\right)=0\)\(\Rightarrow\left(a+c\right)+\left(b-c\right)=0\)

\(\Leftrightarrow a+c+b-c=0\)\(\Leftrightarrow a+b=0\)

Vậy a và b là 2 số đối nhau

5 tháng 2 2016

a, a2 + ab + 2a + 2b

= a(a + b) + 2(a + b)

= (2 + a)(a + b) chia hết cho a + b

b, Gọi 3 số nguyên liên tiếp là a; a + 1; a + 2

Ta có:

a + (a + 1) + (a + 2) = 3a + 3 = 3(a + 1) chia hết cho 3

5 tháng 2 2016

a)

=a^2+a.b+2a+2b

=a.a+a.b+2a+2b

=a(a+b)+2(a+b)

=(a+2).(a+b)

vì (a+b)chia hết cho (a+b)

=>a+2chia hết cho a+b

=>tổng (2+a)(a+b)=(a^2+a.b+2a+2b)chia hết cho (a+b)

b)

gọi 3 số nguyên liên tiếp là a;a+1;a+2

=>tổng là a+(a+1)+(a+2)

=a.a.a+3

=> tổng 3 số liên tiếp thì chia hết cho 3

2 tháng 3 2020

Đặt A=a(a-1)-ab(a+b)

TH1 : a là số chẵn, b là số lẻ

=> a(a-1) và ab(a+b) là các số chẵn

=> a(a-1) và ab(a+b) đều chia hết cho 2

=> A chia hết cho 2  (1)

TH2 : a là số lẻ, b là số chẵn

=> a(a-1) và ab(a+b) là các số chẵn

=> A chia hết cho 2  (2)

TH3 : a và b là các số lẻ

=> a-1 là số chẵn nên a(a-1) cũng là số chẵn

=> a+b là số chẵn nên ab(a+b) cũng là số chẵn

=> a(a-1)-ab(a+b) là số chẵn

=> A chia hết cho 2  (3)

TH$ : a và b là các số chẵn

=> a(a-1) và ab(a+b) là các số chẵn

=> A chia hết cho 2  (4)

Từ (1), (2), (3) và (4)

=> A chia hết cho 2

Vậy A chia hết cho 2.

Tớ cũng không chắc!

25 tháng 1 2021

Giả sử \(x\) là ước nguyên tố của \(a.b\)và \(a+b\)\(\left(x\inℕ^∗\right)\)

\(\Rightarrow a.b⋮x\)và \(a+b⋮x\)

Vì \(a.b⋮x\Rightarrow a⋮x\)hoặc \(b⋮x\)

Vì \(a+b⋮x\Rightarrow a⋮x\)và \(b⋮x\Rightarrow x\inƯC\left(a,b\right)\)

Mà nếu \(a\)và \(b\)nguyên tố cùng nhau ( hay \(\left(a,b\right)=1\)) thì \(ƯCLN\left(a,b\right)=1\)

\(\Rightarrow x=1\)không phải là số nguyên tố trái với giả thiết đặt ra

Do đó không tồn tại ước nguyên tố \(x\)của \(a.b\)và \(a+b\)\(\left(x\inℕ^∗\right)\)

Do đó \(a.b\)và \(a+b\)nguyên tố cùng nhau

\(\left(a.b,a+b\right)=1\)( đpcm )

/ Sai thì bỏ qua nha Hiro /