Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
=>\(\frac{a}{c}=\frac{a+b}{c+d}=>\frac{a}{a+b}=\frac{c}{c+d}\)
=>ĐPCM
b) \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
=>\(\frac{a}{c}=\frac{a-b}{c-d}=>\frac{a}{a-b}=\frac{c}{c-d}\)
=>ĐPCM
Ta có: a2 + b2 = c2 + d2
=> a2 - c2 = d2 - b2
=> (a - c)(a + c) = (d - b)(d + b)
Mà a + b = c + d
=> a - c = d - b
+) Nếu a = c
=> a - c = d - b = 0
=> d = b
=> a2014 = c2014 và d2014 = b2014
=> a2014 + b2014 = c2014 + d2014 (1)
+) Nếu a \(\ne\) c
=> a - c = d - b (khác 0)
=> d \(\ne\) b
Có (a - c)(a + c) = (d - b)(d + b)
=> a + c = d + c (2)
Mà a + b = c + d (3)
Lấy (2) + (3) ta được:
2a + b + c = 2d + b + c
=> 2a = 2d
=> a = d
=> c = b
=> a2014 = d2014 và c2014 = b2014
=> a2014 + b2014 = c2014 + d2014 (4)
Kết hợp (1) và (4) ta được: a2014 + b2014 = c2014 + d2014 (ĐPCM)
a) \(\frac{a}{b}=\frac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\) (đpcm)
b) Có: \(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{b}+1=\frac{c}{d}+1\)
=> \(\frac{a}{b}+\frac{b}{b}=\frac{c}{d}+\frac{d}{d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)