Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Có: ˆxOyxOy^ và ˆyOzyOz^ là 2 góc kề bù
⇒ˆxOy+ˆyOz=180o⇒xOy^+yOz^=180o
Thay số: 60o+ˆyOz=180oˆyOz=180o−60oˆyOz=120o60o+yOz^=180oyOz^=180o−60oyOz^=120o
b. Có: Ot là tia phân giác của góc ˆxOyxOy^
⇒ˆxOt=ˆtOy=ˆxOy2=60o2=30o⇒xOt^=tOy^=xOy^2=60o2=30o
Om là tia phân giác của góc ˆyOzyOz^
⇒ˆyOm=ˆmOz=ˆyOz2=120o2=60o⇒yOm^=mOz^=yOz^2=120o2=60o
Có: Tia Oy nằm giữa 2 tia Ox và Oz
Tia Ot nằm giữa 2 tia Ox và Oy
Tia Om nằm giữa 2 tia Oy và Oz
⇒⇒ Tia Oy nằm giữa 2 tia Om và Ot
⇒ˆtOy+ˆyOm=ˆtOm⇒tOy^+yOm^=tOm^
Thay số: 30o+60o=ˆtOm⇒ˆtOm=90o30o+60o=tOm^⇒tOm^=90o
⇒ˆtOm⇒tOm^ là góc vuông.
1,Vì xOy và yOz là hai góc kề bù -> có tổng số đo là 180 độ
xOy + yOz = 180 độ (tính chất cộng góc)
60 độ + yOz = 180 độ
yOz = 180 độ - 60 độ
yOz = 120 độ
2,Tự làm,dễ mà
1: \(\widehat{yOz}=\dfrac{180^0}{4}=45^0\)
2: \(\widehat{xOt}=\dfrac{135^0}{2}=67.5^0\)
=>\(\widehat{xOm}=112.5^0\)
a) (Làm như toán tổng tỉ)
Ta có: \(\widehat{xOy}+\widehat{yOz}=180\)độ (kề bù)
\(\Rightarrow\widehat{xOy}=180:\left(2+1\right)\times2=120\)độ
\(\Rightarrow\widehat{yOz}=180-120=60\)độ
b) Vì \(Om\)là phân giác \(\widehat{xOy}\Rightarrow\widehat{xOm}=\widehat{yOm}=\widehat{xOy}:2=120:2=60\)độ (Thật ra chỗ này còn cách khác nhưng thôi xài cái này đi ha!)
\(On\)là phân giác \(\widehat{yOz}\Rightarrow\widehat{yOn}=\widehat{nOz}=\widehat{yOz}:2=60:2=30\)độ
Ta có: \(\widehat{mOy}+\widehat{yOn}=\widehat{mOn}\)
\(\Rightarrow60+30=90\)độ (góc vuông)
a) \(\widehat{xOm}=\widehat{mOy}=\dfrac{\widehat{xOy}}{2}=\dfrac{62^0}{2}=31^0\)
\(\widehat{yOn}=\widehat{nOz}=\dfrac{180^0-62^0}{2}=90^0-31^0=59^0\)
b) \(\widehat{mOz}=\widehat{zOy}+\widehat{yOm}\)
\(=180^0-62^0+31^0\)
\(=118^0+31^0=149^0\)
Giải:
a) Vì xÔy và yÔz là 2 góc kề bù
⇒xÔy+yÔz=180o
50o+yÔz=180o
yÔz=180o-50o
yÔz=130o
b) Vì Om là tia p/g của xÔy
⇒xÔm=mÔy=xÔy/2=50o/2=25o
⇒mÔy+yÔz=mÔz
25o +130o=mÔz
⇒mÔz=155o
a.Ta có : xoy^ + yoz^ =180o ( kề bù )
=) yoz^ = 180o - xoy^
=) yoz^ = 180o -80o
=) yoz^ = 100o
b. Ta có: yom^ = moz^ = \(\frac{1}{2}\) yoz^
Và: xon^ = noy^ = \(\frac{1}{2}\) xoy^
=) mon^ = yom^ + noy^
= \(\frac{1}{2}\) yoz^ + \(\frac{1}{2}\) xoy^
= \(\frac{1}{2}\) ( yoz^ + xoy^ )
=\(\frac{1}{2}\) 180o
= 90o
Nếu bạn ko lam như mik thì ban có thể tính yom^ , noy^ rồi tính mon^ cũng được.
Giải
a) +) Tính \(\widehat{xOy}\)
Theo đề bài, ta có: \(\widehat{xOy}+\widehat{yOz}=180^0\) (kề bù)
hay \(\widehat{xOy}+5\widehat{xOy}=180^0\)
\(\Leftrightarrow6\widehat{xOy}=180^0\)
\(\Leftrightarrow\widehat{xOy}=180^0\div6\)
\(\Leftrightarrow\widehat{xOy}=30^0\)
+) Tính \(\widehat{yOz}\)
Theo đề bài, ta có: \(\widehat{yOz}=5\widehat{xOy}\)
hay \(\widehat{yOz}=5.30^0\)
\(\Leftrightarrow\widehat{yOz}=150^0\)
b) Vì Om là tia phân giác của \(\widehat{yOz}\) nên \(\widehat{yOm}=\widehat{mOz}=\frac{\widehat{yOz}}{2}=\frac{150^0}{2}=75^0\)
Vì Om nằm giữa Oz và Oz mà \(\widehat{xOy}\) và \(\widehat{yOz}\) kề bù nên Oy nằm giữa Ox và Om.
\(\Rightarrow\widehat{xOy}+\widehat{yOm}=\widehat{xOm}\)
hay \(30^0+75^0=\widehat{xOm}\)
\(\Leftrightarrow\widehat{xOm}=105^0\)
Vậy \(\widehat{xOm}=105^0\)