Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại I và I là trung điểm của AB
b: Xét ΔBAD có BO/BD=BI/BA
nên OI//AD
=>OI/AD=BO/BD=1/2
=>OI=1/2AD
Khi AD=6 thì OI=1/2*6=3cm
Do AB là tiếp tuyến chung của (O) và (I) nên:
\(\left\{{}\begin{matrix}\widehat{IBA}=90^o\\\widehat{OAB}=90^o\end{matrix}\right.\) (tiếp tuyến vuông góc với bán kính)
\(\Rightarrow\left\{{}\begin{matrix}IB\perp AB\\OA\perp AB\end{matrix}\right.\)
\(\Rightarrow IB//OA\) (cùng vuông góc với AB)
\(\Rightarrow ABOI\) là hình thang
Ta kẻ IE vuông góc với OA tại E
⇒ IEAB là hình chữ nhật
⇒ \(IB=AE=2\left(cm\right)\) (cặp cạnh đối của hình chữ nhật)
\(\Rightarrow OE=OA-AE=8-2=6\left(cm\right)\)
Mà: \(OI=OC+IC=2+8=10\left(cm\right)\)
Xét ΔIEO vuông tại E áp dụng định lý Py-ta-go ta có:
\(IO^2=OE^2+IE^2\)
\(\Leftrightarrow10^2=6^2+IE^2\)
\(\Leftrightarrow IE=\sqrt{100-36}=\sqrt{64}\)
\(\Leftrightarrow IE=8\left(cm\right)\)
Mà: \(AB=IE=8\left(cm\right)\) (ABIE là hình chữ nhật)
Diện tích của tứ giác ABOI có AB là đường cao là:
\(S_{ABOI}=\dfrac{\left(IB+OA\right)\cdot AB}{2}=\dfrac{\left(2+8\right)\cdot8}{2}=40\left(cm^2\right)\)
Đáp án D
Gọi giao điểm của AB và OI là điểm H .
Theo tính chất đường nối tâm ta có H là trung điểm của AB nên HA = HB = 24 : 2 = 12 cm
Áp dụng định lí Pytago vào tam giác vuông OAH ta có:
O H 2 = O A 2 – A H 2 = 15 2 – 12 2 = 81 nên OH = 9 cm
Áp dụng đinh lí Pytago vào tam giác vuông AHI ta có:
H I 2 = A I 2 – A H 2 = 20 2 – 12 2 = 256 n ê n H I = 16 c m
Do đó, OI = OH + HI = 9 + 16 = 25 cm
OI=5+3=8cm
Xét ΔCOA có BI//OA
nên CI/CO=BI/AO=3/5
=>CI/(CI+8)=3/5
=>5CI=3CI+24
=>2CI=24
=>CI=12cm
=>CO=12+8=20cm
Chọn C