Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho hai đường thẳng xx' và yy' cắt nhau tại O. biết x'Oy+xOy'=120o. Tính các góc xOy;yOx';x'Oy';y'Ox
a) tham khảo trên trang này:
https://lazi.vn/edu/exercise/748977/chung-minh-rang-neu-2-goc-xoy-va-goc-xoy-cung-nhon-hoac-cung-tu-co-ox-vuong-goc-voi-ox-va-oy-vuong-goc-voi-oy-thi-goc-xoy-goc-xoy#:~:text=B%C3%A0i%20t%E1%BA%ADp-,Ch%E1%BB%A9ng%20minh%20r%E1%BA%B1ng%20%3A%20N%E1%BA%BFu%202%20g%C3%B3c%20xOy%20v%C3%A0%20g%C3%B3c%20x%27O%27y%27%20c%C3%B9ng%20nh%E1%BB%8Dn%20ho%E1%BA%B7c%20c%C3%B9ng%20t%C3%B9%20c%C3%B3%20Ox%20vu%C3%B4ng%20g%C3%B3c%20v%E1%BB%9Bi%20Ox%27%20v%C3%A0%20Oy%20vu%C3%B4ng%20g%C3%B3c%20v%E1%BB%9Bi%20Oy%27%20th%C3%AC%20g%C3%B3c%20xOy%20%3D%20g%C3%B3c%20x%27O%27y%27,-Lan%20Nguy%E1%BB%85n%20%7C%20%20Chat
Sửa đề: 2 góc nhọn xOy và x'O'y'
Gọi A là giao của Oy và O'x'
Vì Ox//O'x' nên \(\widehat{xOy}=\widehat{yAx'}\) (đồng vị)
Mà Oy//O'y' nên \(\widehat{yAx'}=\widehat{x'O'y'}\) (đồng vị)
Vậy \(\widehat{xOy}=\widehat{x'O'y'}\)
a,Kéo dài OY cắt O'X' tại A ta có:
\(\widehat{XOY}\) = \(\widehat{XOA}\) = \(\widehat{OAO'}\) (so le trong) (1)
\(\widehat{Y'O'X'}\) = \(\widehat{Y'O'A}\) = \(\widehat{OAO'}\) (so le trong) (2)
Kết hợp (1) Và (2) ta có:
\(\widehat{XOY=}\) \(\widehat{X'O'Y'}\) (đpcm)
b, Kéo dài OY cắt O'Z' tại H
\(\widehat{ZOA}\) = \(\dfrac{1}{2}\) \(\widehat{XOY}\) (vì OZ là phân giác của góc XOY
\(\widehat{HO'A}\) = \(\dfrac{1}{2}\) \(\widehat{X'O'Y'}\) (vì OY là phân giác của góc X'O'Y')
Mặt khác ta có \(\widehat{OAO'}\) = \(\widehat{HO'A}\) + \(\widehat{AHO'}\) (góc ngoài tam giác bằng tổng hai góc trong không kề với nó)
\(\widehat{HO'A}\) = \(\dfrac{1}{2}\) \(\widehat{OAO'}\) ⇒ \(\widehat{AHO'}\) = \(\dfrac{1}{2}\) \(\widehat{OAO'}\) = \(\dfrac{1}{2}\) \(\widehat{XOY}\)
⇒ \(\widehat{ZOA}\) = \(\widehat{AHO'}\) (hai góc này ở vị trí so le trong)
⇒ OZ // O'Z' (đpcm)