Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
CM: a) Do AM là tia p/giác của góc xAB nên :
\(\widehat{xAM}=\widehat{MAB}=\frac{\widehat{xAB}}{2}\)
Do BN là tia p/giác của góc ABy' nên :
\(\widehat{ABN}=\widehat{NBy'}=\frac{\widehat{ABy'}}{2}\)
Mà \(\widehat{xAB}=\widehat{ABy'}\) (so le trong vì xy // x'y')
=> \(\widehat{MAB}=\widehat{ABN}\)
mà 2 góc này ở vị trí so le trong
=> AM // BN (Đpcm)
b) Xét t/giác AMB và t/giác BNA
có : \(\widehat{MAB}=\widehat{ABN}\)(cmt)
AB : chung
\(\widehat{MBA}=\widehat{NAB}\) (so le trong vì xy // x'y')
=> t/giác AMB = t/giác BNA (g.c.g)
=> \(\widehat{AMB}=\widehat{ANB}\)(2 góc t/ứng)
có góc AOC và góc BOC là 2 góc kề bù
=> GÓC AOC + GÓC BỌC = 180 ĐỘ ( TÍNH CHẤT 2 GÓC KỀ BÙ )
T/S : 50 ĐỘ + GÓC BỌC = 180 ĐỘ
GÓC BOC = 180 ĐỘ - 50 ĐỘ
GÓC BOC = 130 ĐỘ
CÓ OM LÀ TIA PHÂN GIÁC CỦA GÓC AOC
=> GÓC AOM = GÓC MỌC = GÓC AOC :2 = 50 ĐÔ :2 = 25 ĐỘ
CÓ GÓC BOM = GÓC BỌC + GÓC COM = 130 ĐỘ + 25 ĐỘ
=> GÓC BOM = 155 ĐỘ
CÓ GÓC NOB + GÓC BOM = 180 ĐỘ
T/S GÓC NOB + 155 ĐỘ = 180 ĐỘ
GÓC NOB = 25 ĐỘ
CÓ GÓC CON = GÓC COB + GÓC NOB
T/S GÓC CON = 130 ĐỘ + 25 ĐỘ
GÓC CON = 155 ĐỘ
CÓ GÓC DON KỀ BÙ VỚI GÓC CON
=> GÓC DON + GÓC CON = 180 ĐỘ
T/S GÓC DON + 155 ĐỘ = 180 ĐỘ
GÓC DON = 25 ĐỘ
VAY ....
K CHO MINH NHA
Ta có:\(\widehat{AOC}=\widehat{DOB}\)(2 góc đối đỉnh)
=>\(\widehat{DOB}=50độ\)
Vì OM là tia phân giác \(\widehat{AOC}\)
=>\(\widehat{AOM}=\widehat{MOC}=\frac{\widehat{AOC}}{2}=\frac{50độ}{2}=25độ\)
Ta có:\(\widehat{DON}=\widehat{COM}\)(2 góc đối đỉnh)
=>\(\widehat{DON}=25độ\)
Ta có:\(\widehat{BON}=\widehat{AOM}\)(2 góc đối đỉnh)
=>\(\widehat{BON}=25độ\)
Vậy \(\widehat{BON}=25độ;\widehat{DON}=25độ\)
Hình các bạn tự vẽ nhé:
Câu 1:
COF+FOD+DOE bằng 300 độ
mà COF+FOD+DOE+EOC bằng 360 độ [góc đầy]
EOC bằng 360 độ - 300 độ bằng 60 độ 1
EOC bằng DOF [đối đỉnh] 2
Từ 1 và 2 suy ra DOF bằng 60 độ
COE bằng 60 độ+ EOD bằng 180 độ [kề bù] 3
COE bằng 60 độ [chứng minh trên] 4
Từ 3 và 4 suy ra EOD bằng 180 độ - 60 độ bằng 120 độ
EOD bằng COF [đối đỉnh] suy ra COF bằng 120 độ
Vậy EOD bằng COF bằng 120 độ
EOC bằng DOF bằng 60 độ
Bài 1
a
Ta có:
\(\widehat{O_1}=\widehat{O_2}=60^0\left(đ.đ\right)\)
\(\widehat{O_1}+\widehat{O_2}=180^0\Rightarrow\widehat{0_2}=180^0-\widehat{O_1}=180-60^0=120^0\)
\(\widehat{O_2}=\widehat{O_4}=120^0\left(đ.đ\right)\)
b
Ta có:
\(\widehat{x'Oy}=\widehat{y'Ox}\Rightarrow\frac{1}{2}\widehat{x'Oy}=\frac{1}{2}\widehat{y'Ox}\Rightarrow\widehat{yOn}=\widehat{xOm}\)
\(\widehat{x'Oy}+\widehat{yOx}=180^0\)
\(\Rightarrow2\cdot\widehat{yOn}+\widehat{yOx}=180^0\)
\(\Rightarrow\widehat{yOn}+\widehat{yOx}+\widehat{xOm}=180^0\)
\(\Rightarrowđpcm\)
Bài 2
a
Ta có:
\(\widehat{BOD}=\widehat{AOC}=90^0\Rightarrow\widehat{BOC}+\widehat{COD}=\widehat{AOD}+\widehat{COD}\Rightarrow\widehat{BOC}=\widehat{AOD}\)
b
Ta có:
\(\widehat{BOM}=\widehat{BOC}+\widehat{COM}=\widehat{AOD}+\widehat{MOD}=\widehat{MOA}\)
Hiển nhiên OM nằm giữa \(\widehat{AOB}\) nên suy ra đpcm