\(d_{1_{ }}:2nx-2\left(3m+2\right)y=15+n\) và
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2022

a: Khi n=3 thì (d1): 6x-(6m+4)y=18 và (d2): (3m-2)x+6y=12

Tọa độ của (d1) cắt trục Ox là:

y=0 và 6x=18

=>x=3 và y=0

Thay x=3 và y=0 vào (d2), ta được;
3(3m-2)+0=12

=>3(3m-2)=12

=>3m-2=4

=>3m=6

=>m=2

b: Theo đề, ta có hệ:

\(\left\{{}\begin{matrix}2n-\left(6m+4\right)\cdot\left(-1\right)=15+n\\\left(3m-2\right)\cdot1+2n\cdot\left(-1\right)=12\end{matrix}\right.\)

=>2n+6m+4-n-15=0 và 3m-2-2n=12

=>6m+n=11 và 3m-2n=14

=>m=12/5 và n=-17/5

9 tháng 4 2022

Phương trình hoành độ giao điểm: 

x2 = 2x - m

<=> x2 - 2x + m = 0

Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\)

<=> (-1)2 - m > 0

<=> 1 - m > 0

<=> m < 1

Ta có: y1 = x12  

          y2 = x22 

y1 + y2 + x12x22 = 6(x1 + x2)

<=> x12 + x22 + x12x22 = 6(x1 + x2)

<=> (x1 + x2)- 2x1x2 + (x1x2)2 = 6(x1 + x2)

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)

<=> 22 - 2m + m2 = 6.2

<=> 4 - 2m + m2 = 12

<=> 4 - 2m + m2 - 12 = 0

<=> m2 - 2m - 8 = 0

<=> m = 4 (ktm) hoặc m = -2 (tm)

=> m = -2

NV
25 tháng 6 2020

Pt hoành độ giao điểm: \(x^2-mx-m-1=0\)

\(a-b+c=1+m-m-1=0\) nên pt có 2 nghiệm:

\(\left\{{}\begin{matrix}x_1=-1\\x_2=m+1\end{matrix}\right.\) để 2 nghiệm pb \(\Rightarrow-1\ne m+1\Rightarrow m\ne-2\)

\(\Rightarrow\left\{{}\begin{matrix}y_1=x_1^2=1\\y_2=x_2^2=m^2+2m+1\end{matrix}\right.\)

\(y_1+y_2>5\Leftrightarrow m^2+2m+2>5\)

\(\Leftrightarrow m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\)

NV
31 tháng 7 2020

Pt hoành độ giao điểm:

\(3x^2+2\left(m+1\right)x-1=0\) (1)

\(ac=-3< 0\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb trái dấu hay (d) luôn cắt (P) tại 2 điểm pb với mọi m

Do \(x_1;x_2\) là nghiệm nên: \(\left\{{}\begin{matrix}3x_1^2+2\left(m+1\right)x_1-1=0\\3x_2^2+2\left(m+1\right)x_2-1=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(m+1\right)x_1=\frac{1-3x_1^2}{2}\\\left(m+1\right)x_2=\frac{1-3x_2^2}{2}\end{matrix}\right.\) \(\Rightarrow\left(m+1\right)\left(x_1+x_2\right)=1-\frac{3}{2}x_1^2-\frac{3}{2}x_2^2\)

\(f\left(x_1\right)-f\left(x_2\right)=x_1^3-x_2^3+\left(m+1\right)\left(x_1^2-x_2^2\right)-\left(x_1-x_2\right)\)

\(=\left(x_1-x_2\right)\left(x^2_1+x_2^2+x_1x_2+\left(m+1\right)\left(x_1+x_2\right)-1\right)\)

\(=\left(x_1-x_2\right)\left(x_1^2+x_2^2+x_1x_2+1-\frac{3}{2}x_1^2-\frac{3}{2}x_2^2-1\right)\)

\(=-\frac{1}{2}\left(x_1-x_2\right)\left(x_1^2+x_2^2-2x_1x_2\right)=-\frac{1}{2}\left(x_1-x_2\right)^3\)

26 tháng 11 2022

b: Tọa độ giao là:

-1/2x+5=1/3x+1 và y=1/3x+1

=>-5/6x=-4 và y=1/3x+1

=>x=4:5/6=4*6/5=24/5 và y=1/3*24/5+1=24/15+1=8/5+1=13/5

c: Vì (d3)//(d1) nên (d3): y=-1/2x+b

Thay y=2 vào (d2), ta được:

x/3+1=2

=>x=3

Thay x=3 và y=2 vào y=-1/2x+b, ta được:

b-3/2=2

=>b=7/2

d: Thay x=24/5 và y=13/5 vào (d4), ta được:

24/5(m-3)+m+1=13/5

=>24/5m-72/5+m+1=13/5

=>29/5m-67/5=13/5

=>29/5m=80/5

=>m=80/5:29/5=80/5*5/29=80/29