K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

a) Xét tam giác CAO và tam giác DBO:
OA=OB(do O là trung điểm của đoạn AB)
AOC=BOD(hai góc đối đỉnh)
OC=OD(do O là trung điểm của đoạn CD)
Do đó tam giác CAO bằng tam giác DBO (c.g.c)
=> AC=DB (hai cạnh tương ứng)
và ACO=BDO (hai góc tương ứng)
Mà chúng lại ở vị trí so le trong nên suy ra AC/DB(đpcm)
b) Xét tam giác BAC và tam giác ABD:
AB: cạnh chung
AC=DB(CMT)
BAC=ABD( do tam giác CAO bằng tam giác DBO)
Do đó tam giác BAC bằng tam giác ABD (c.g.c)
=> BC=AD (hai cạnh tương ứng)
và ABC=BAD ( hai góc tương ứng)
Mà chúng lại ở vị trí so le trong nên suy ra AD//CB
c) Từ tam giác BAC bằng tam giác ABD nên suy ra góc ACB = góc BDA ( hai góc tương ứng)
d) Xét tam giác HCO và tam giác BDO:
OH=OI (gt)
HOC=BOD( đối đỉnh)
OC=OD(do O là trung điểm của đoạn DC)
Do đó tam giác HCO bằng tam giác BDO (c.g.c)
=>CHO=OID(hai góc tương ứng )
mà CHO=90 độ ( do CH vuông góc với AB )
cho nên OID=90 độ
=> DI vuông góc với AB
(hình tự vẽ nhé)

20 tháng 11 2021

cảm ơn bạn nhe!!

 

6 tháng 11 2019

Bài này giải kiểu j vậy ???

3 tháng 7 2016

mk vẽ hình xong nhìn hình là bó tay lun, khó qábucminh

23 tháng 4 2017

bài cậu khủng hơn cả bài mikbatngo

mik giải mãi k ragianroi

bó tay oy limdim

8 tháng 8 2018

MIK SỬA LẠI LÀ  DI VUÔNG GÓC VỚI AB NHA

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC...
Đọc tiếp

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD  (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB,  EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC

1
15 tháng 12 2019

Bạn có thể tự vẽ hình chứ ? Tại hình hơi rối nên mình lười vẽ =)))
a) Xét ∆ABD và ∆CED có :
DA = DC (D là trung điểm của AC)
∠ADB = ∠CDE (2 góc đối đỉnh)
DB = DE (GT)
=> ∆ABD = ∆CED (c.g.c)
=> ∠ABD = ∠CED (2 góc tương ứng)
    Mà 2 góc này ở vị trí so le trong
=> AB // CE (DHNB)
b) Ta có : AF ⊥ BD (GT)
    Mà CG ⊥ DE (GT)
=> AF // CG (Tính chất)
=> ∠DAF = ∠DCG (2 góc so le trong) (1)
Xét ∆ADF và ∆CDG có :
∠DAF = ∠DCG (Theo (1))
DA = DC (D là trung điểm của AC)
∠ADF = ∠CDG (2 góc đối đỉnh)
=> ∆ADF = ∆CDG (g.c.g)
=> DF = DG (2 cạnh tương ứng)
c) Mình cũng có chứng minh thẳng hàng mấy lần rồi nhưng nhìn hình thì mình không tìm được các yếu tố có thể chứng minh nên bạn nhờ ai khác nhé.