K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\overrightarrow{AB}=\left(\frac{9}{4};-3\right)\Rightarrow AB=\frac{15}{4}\) \(\overrightarrow{AC}=\left(4;-3\right)\Rightarrow AC=5\) Gọi AD là đường phân giác trong góc A với D thuộc BC. Gọi toạ độ của điểm D là D(x;y) \(\overrightarrow{DC}=\left(2-x;-y\right);\overrightarrow{DB}=\left(\frac{1}{4}-x;-y\right)\) Theo tính chất đường phân giác ta...
Đọc tiếp

\(\overrightarrow{AB}=\left(\frac{9}{4};-3\right)\Rightarrow AB=\frac{15}{4}\)

\(\overrightarrow{AC}=\left(4;-3\right)\Rightarrow AC=5\)

Gọi AD là đường phân giác trong góc A với D thuộc BC. Gọi toạ độ của điểm D là D(x;y)

\(\overrightarrow{DC}=\left(2-x;-y\right);\overrightarrow{DB}=\left(\frac{1}{4}-x;-y\right)\)

Theo tính chất đường phân giác ta có:

\(\frac{DB}{DC}=\frac{AB}{AC}\)

\(\frac{\overrightarrow{DB}}{\overrightarrow{DC}}=-\frac{AB}{AC}\)

\(\frac{\overrightarrow{DB}}{\overrightarrow{DC}}=-\frac{3}{4}\)

\(\Rightarrow\overrightarrow{DB}=-\frac{3}{4}\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{4}-x=-\frac{3}{4}\left(2-x\right)\\-y=-\frac{3}{4}\left(-y\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

\(\Rightarrow D\left(1;0\right)\)

Gọi BJ là đường phân giác trong góc B với J thược AD. Gọi toạ độ điểm J là J(x;y).

\(\overrightarrow{BA}=\left(-\frac{9}{4};3\right)\Rightarrow AB=\frac{15}{4}\)

\(\overrightarrow{BD}=\left(\frac{3}{4};0\right)\Rightarrow BD=\frac{3}{4}\)

Theo tính chất đường phân giác góc B ta có:

\(\frac{JA}{JD}=\frac{BA}{BD}\)

\(\Rightarrow\)\(\frac{\overrightarrow{JA}}{\overrightarrow{JD}}=-5\)

\(\Rightarrow\overrightarrow{JA}=-5\overrightarrow{JD}\)

\(\Rightarrow\left\{{}\begin{matrix}-2-x=-5\left(1-x\right)\\3-y=-5\left(-y\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{2}\end{matrix}\right.\)

\(J\left(\frac{1}{2};\frac{1}{2}\right)\)

Vì J là giao điểm của hai đường phân giác trong góc A và góc B nên J là tâm đường tròn nội tiếp tam giác ABC

0
5 tháng 8 2019

\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}+\overrightarrow{MC}\right|\\ \Rightarrow\left(\overrightarrow{MA}+\overrightarrow{MB}\right)^2-\left(\overrightarrow{MA}+\overrightarrow{MC}\right)^2=0\\ \Rightarrow\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MA}+\overrightarrow{MC}\right)\left(\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MA}-\overrightarrow{MC}\right)=0\\ \Rightarrow\left(2\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)\left(\overrightarrow{MB}-\overrightarrow{MC}\right)=0\)

Gọi I là trung điểm BC

\(\Rightarrow\left(2\overrightarrow{MA}+2\overrightarrow{MI}\right)\cdot\overrightarrow{CB}=0\\ \Rightarrow\left[{}\begin{matrix}\overrightarrow{CB}=0\\2\overrightarrow{MA}+2\overrightarrow{MI}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}C\equiv B\\\overrightarrow{MA}=-\overrightarrow{MI}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}C\equiv B\\M\text{ là trung điểm }AI\end{matrix}\right.\)

Vậy với \(C\equiv B\) thì M tùy ý

Với \(C\ne B\) thì M là trung điểm đường trung tuyến ứng với BC của \(\Delta ABC\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

16 tháng 12 2019

1. \(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{x+1}=1\\\frac{1}{y-1}=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)

2. \(\Leftrightarrow\overrightarrow{a}\cdot\overrightarrow{b}=0\)

\(\Leftrightarrow4m+\left(-2\right)\cdot\left(-1\right)=0\)

\(\Leftrightarrow m=-\frac{1}{2}\)

18 tháng 7 2017

Phương trình tổng quát \(\Delta\):

\(\dfrac{x-2}{2}=\dfrac{y-3}{1}\)=> x-2y+4=0

a. Vì M \(\in\) \(\Delta\)=> M (2y-4;y)

Theo giả thiết, MA=5 <=> \(\sqrt{(-2y+4)^{2}+(1-y)^{2}}\)=5

<=> \(5y^2-18y-8=0\)

<=>y=4 và y=\(\dfrac{-2}{5}\)

Vậy M1(4;4) và M2(\(\dfrac{-24}{5};\dfrac{-2}{5}\))

b. Gọi I là tọa độ giao điểm của đường thẳng \(\Delta\)với đường thẳng (d): x+y+1=0

Ta có hệ phương trình:

\(\begin{cases} x-2y+4=0\\ x+y+1=0 \end{cases}\)

\(\begin{cases} x=-2\\ y=1 \end{cases}\)

=> I(-2;1) là giao điểm của đường thẳng \(\Delta\)với đường thẳng d

c. Nhận thấy, điểm A\(\notin\)\(\Delta\)

Để AM ngắn nhất <=> M là hình chiếu của A trên đường thẳng \(\Delta\)

Vì M\(\in\Delta\)=> M(2y-4;y)

Ta có: Vectơ chỉ phương của \(\overrightarrow{AM}\)\(\overrightarrow{u}\)(2;1)

\(\overrightarrow{AM}\) (2y-4;y-1)

Vì A là hình chiếu của A trên \(\Delta\)nên \(\overrightarrow{AM}\)\(\perp\Delta\)

<=> \(\overrightarrow{AM}\)\(\perp\overrightarrow{u}\)

<=> \(\begin{matrix}\overrightarrow{AM}&\overrightarrow{u}\end{matrix}\) =0

<=> 2(2y-4)+(y-1)=0

<=> 5y-9=0

<=> y= \(\dfrac{9}{5}\)

=> B (\(\dfrac{-2}{5}\);\(\dfrac{4}{5}\))