Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`K(x)=F(x)+G(x)`
`K(x)=(3x^2+2x-5)+(-3x^2-2x+2)`
`= 3x^2+2x-5-3x^2-2x+2`
`= (3x^2-3x^2)+(2x-2x)+(-5+2)`
`= -3`
Bậc của đa thức: `0`
`@` `\text {dnammv}`
Lời giải:
\(f(x)=x^2+3mx+m^2\Rightarrow f(1)=1+3m+m^2\)
\(g(x)=x^2+(2m-1)x+m^2\Rightarrow g(1)=1+(2m-1)+m^2=m^2+2m\)
Để \(f(1)=g(1)\Leftrightarrow 1+3m+m^2=m^2+2m\)
\(\Leftrightarrow 1+m=0\Leftrightarrow m=-1\)
Vậy \(m=-1\)
\(\left\{{}\begin{matrix}f\left(x\right)=x^2+3mx+m^2\\g\left(x\right)=x^2+\left(2m-1\right)x+m^2\end{matrix}\right.\)
\(h\left(x\right)=f\left(x\right)-g\left(x\right)=\left[3m-\left(2m-1\right)\right]x=\left(m+1\right)x\)
\(f\left(1\right)=g\left(1\right)\Rightarrow f\left(1\right)-g\left(1\right)=0\Rightarrow h\left(1\right)=0\)
\(\Rightarrow\left(m+1\right).1=0\Rightarrow m=-1\)
a)
xét f(x)=0
=>3x-6=0
=> 3x=6
=> x=2
vậy nghiệm của f(x) là 2
xét g(t)=0
=> -4t-8=0
=> -4t=8
=> t=-2
vậy nghiệm của g(t) là -2
b)
f(x)=1=> 3x-6=1
=> 3x=7
=> x=7/3
g(t)=1=> -4t-8=1
=> -4t=9
=> t=-9/4
a)
xét f(x)=0
=>3x-6=0
=> 3x=6
=> x=2
vậy nghiệm của f(x) là 2
xét g(t)=0
=> -4t-8=0
=> -4t=8
=> t=-2
vậy nghiệm của g(t) là -2
b)
f(x)=1=> 3x-6=1
=> 3x=7
=> x=7/3
g(t)=1=> -4t-8=1
=> -4t=9
=> t=-9/4