K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

\(A=x^7-2x^4+3x^3-3x^4+2x^7-x+7-2x^3\) 

\(A=3x^7-5x^4+x^3-x+7\) 

\(B=3x^2-4x^4-3x^2-5x^5-0,5x-2x^2-3\)

\(B=-5x^5-4x^4-2x^2-0,5x-3\)

8 tháng 8 2016

\(A+B=3x^7-5x^4+x^3-x+7-5x^5-4x^4-2x^2-0,5x-3\) 

\(A+B=3x^7-9x^4+x^3-1,5x+4\)

\(A-B=3x^7-5x^4+x^3-x+7+5x^5+4x^4+2x^2+0,5x+3\)

\(A-B=3x^7-x^4+x^3-0,5x+10+5x^5\)

1 tháng 6 2020

a)\(A\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\\ B\left(x\right)=x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)

b)\(A\left(x\right)+B\left(x\right)\)

\(\left(5x^5-4x^4-2x^3+4x^2+3x+6\right)+\left(x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\right)\\ =5x^2-4x^4-2x^3+4x^2+3x+6+x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\\ =\left(5x^5+x^5\right)+\left(-4x^4+2x^4\right)+\left(-2x^3-2x^3\right)+\left(4x^2+3x^2\right)+\left(3x-x\right)+\left(6+\frac{1}{4}\right)\\ =6x^5-2x^4-4x^3+7x^2+2x+\frac{25}{4}\)

24 tháng 7 2019

a) \(A\left(x\right)=2x^4-5x^3-x^4-6x^2+5+5x^2-10+x\)

\(=\left(2x^4-x^4\right)-5x^3+\left(5x^2-6x^2\right)+x+\left(5-10\right)\)

\(=3x^4-5x^3-x^2+x-5\)

\(B\left(x\right)=-7-4x+6x^4+6+3x-x^3-3x^4\)

\(=\left(6x^4-3x^4\right)-x^3+\left(3x-4x\right)+\left(6-7\right)\)

\(=x^4-x^3-x-1\)

24 tháng 7 2019

b) \(A\left(x\right)+B\left(x\right)\)

\(=\left(3x^4-5x^3-x^2+x-5\right)+\left(x^4-x^3-x-1\right)\)

\(=5x^4-6x^3-x^2-6\)

 \(A\left(x\right)-B\left(x\right)\)

\(=\left(3x^4-5x^3-x^2+x-5\right)-\left(x^4-x^3-x-1\right)\)

\(=\left(3x^4-5x^3-x^2+x-5\right)-x^4+x^3+x+1\)

\(=2x^4-4x^3-x^2+2x-4\)

a: \(=\left(x^7+x^7\right)+\left(-3x^4-x^4\right)+\left(2x^3-x^3\right)-x^2-x+5\)

\(=2x^7-4x^4+x^3-x^2-x+5\)

b: \(=-4x^5-3x^4+\left(2x^2-3x^2-x^2\right)-\dfrac{1}{2}x+1\)

\(=-4x^5-3x^4-2x^2-\dfrac{1}{2}x+1\)

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

Bài 1:
a)

\(F+G+H=(x^3-2x^2+3x+1)+(x^3+x-1)+(2x^2-1)\)

\(=2x^3+4x-1\)

b)

\(F-G+H=0\)

\(\Leftrightarrow (x^3-2x^2+3x+1)-(x^3+x-1)+(2x^2-1)=0\)

\(\Leftrightarrow 2x+1=0\)

\(\Leftrightarrow x=-\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

Bài 2:

a)

\(A=-4x^5-x^3+4x^2-5x+9+4x^5-6x^2-2\)

\(=(-4x^5+4x^5)-x^3+(4x^2-6x^2)-5x+(9-2)\)

\(=-x^3-2x^2-5x+7\)

\(B=-3x^4-2x^3+10x^2-8x+5x^3\)

\(=-3x^4+(5x^3-2x^3)+10x^2-8x\)

\(=-3x^4+3x^3+10x^2-8x\)

b)

\(P=A+B=(-x^3-2x^2-5x+7)+(-3x^4+3x^3+10x^2-8x)\)

\(=-3x^4+(3x^3-x^3)+(10x^2-2x^2)-(8x+5x)+7\)

\(=-3x^4+2x^3+8x^2-13x+7\)

\(P(-1)=-3.(-1)^4+2(-1)^3+8(-1)^2-12(-1)+7=23\)

\(Q=A-B=(-x^3-2x^2-5x+7)-(-3x^4+3x^3+10x^2-8x)\)

\(=3x^4-(x^3+3x^3)-(2x^2+10x^2)+(8x-5x)+7\)

\(=3x^4-4x^3-12x^2+3x+7\)

21 tháng 3 2021

a, Sắp xếp : \(P\left(x\right)=2x^3+5x^2-3x^4+7-4x\)

\(\Rightarrow P\left(x\right)=-3x^4+2x^3-5x^2-4x+7\)

\(Q\left(x\right)=-3+2x^4-x+x^3-5x^2\)

\(\Rightarrow Q\left(x\right)=2x^4+x^3-5x^2-x-3\)

b, Ta có :* Đặt \(V\left(x\right)=P\left(x\right)+Q\left(x\right)\) 

hay \(V\left(x\right)=2x^3+5x^2-3x^4+7-4x-3+2x^4-x+x^3-5x^2\)

\(=3x^3-x^4+4-5x\)

Vậy \(V\left(x\right)=3x^3-x^4+4-5x\)

Ta có : * Đặt \(K\left(x\right)=P\left(x\right)-Q\left(x\right)\)

hay \(2x^3+5x^2-3x^4+7-4x-\left(-3+2x^4-x+x^3-5x^2\right)\)

\(=2x^3+5x^2-3x^4+7-4x+3-2x^4+x-x^3+5x^2\)

\(=x^3+10x^2-5x^4+10-3x\)

Vậy \(K\left(x\right)=x^3+10x^2-5x^4+10-3x\)

25 tháng 3 2020

a) Ta có : \(A\left(x\right)+B\left(x\right)\)

\(=2x^3+2x-3x^2+1+2x^2+3x^3-x-5\)

\(=\left(2x^3+3x^3\right)+\left(-3x^2+2x^2\right)+\left(2x-x\right)+\left(1-5\right)\)

\(=5x^3-x^2-x-4\)

b) Ta sẽ sắp xếp như sau :

\(A\left(x\right)=2x^3-3x^2+2x+1\)

\(B\left(x\right)=3x^3+2x^2-x-5\)

c) Ta có : \(A\left(x\right)-B\left(x\right)\)

\(=\left(2x^3+2x-3x^2+1\right)-\left(2x^2+3x^3-x-5\right)\)

\(=2x^3+2x-3x^2+1-2x^2-3x^3+x+5\)

\(=\left(2x^3-3x^3\right)+\left(-3x^2-2x^2\right)+\left(2x+x\right)+\left(1+5\right)\)

\(=-x^3-5x^2+3x+6\)

19 tháng 6 2020

Dài ... quá :))

A(x) = x3 - 2x + 3x2 - 3/2x + x4 - x3 + 5x - 7 - 0,7x2 + 2x4 - 3/4

       = (x3 - x3) + (-2x - 3/2x + 5x) + (3x2 - 0,7x2) + (x4 + 2x4) + (-7 - 3/4)

       = 3/2x + 2,3x2 + 3x4 - 31/4

Sắp xếp : A(x) =  3x4 + 0x3 + 2,3x2 + 3/2x - 31/4

b(x) = 3x5 - 12x3 - 6x2 + 2x5 - 2x4 + 4x2 + x5 - 2x4

       = (3x5 + x+ 2x5)  - 12x3 + (-6x2 + 4x2) + (-2x4 - 2x4)

       = 6x5 - 12x3 - 2x2 - 4x4

Sắp xếp : B(x) = 6x5 - 4x4 - 12x3 - 2x2

Tính :

h(x) = a(x) + b(x)

=> h(x) = (3x4 + 0x3 + 2,3x2+ 3/2x - 31/4) + (6x5 - 4x4 - 12x3 - 2x2)

=> h(x) = 3x4 + 0x3 + 2,3x2 + 3/2x - 31/4 + 6x5 - 4x4 - 12x3 - 2x2

=> h(x) = (3x4 - 4x4) + (0x3 - 12x3) + (2,3x2 - 2x2) + 3/2x - 31/4 + 6x5

=> h(x) = -x4 - 12x3 + 0,3x2 + 3/2x - 31/4 + 6x5

Còn bài trừ tương tự nhưng đổi dấu vế thứ hai thôi ...