Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x-y-z=0
=>x=y+z
=>x2=y2+z2+2yz
=>y2+z2=x2-2yz
*A=xyz-xy2-xz2=x.(yz-y2-z2)=x.[yz-(x2-2yz)]=x.(3yz-x2)=3xyz-x3
*B=y3+z3=(y+z)(x2-yz+z2)=x.(x2-2yz-yz)=x3-3xyz=-(3xyz-x3)
Vậy A và B đối nhau
a: \(\Leftrightarrow A=-\left(x^2-xy^2+2xz-3y^2\right)=-x^2+xy^2-2xz+3y^2\)
b: Vì tổng của B với \(4x^2y+5y^2-xz+z^2\) là một đa thức không chứa biến x nên \(B=-4x^2y+xz\)
Các bạn thông cảm cho mình nha mình đánh máy sai đề câu b đề đung là
b) Tính P biết x^2 + x -3 = 0
a) thay x = 1 vào đa thức P (x) ta có:
P (1) = 3. (1)^3 + 4 . (1)^2 - 8 . 1 + 1
= 3 + 4 - 8 + 1 = 0
vậy x = 1 là nghiệm của đa thức P(x)
b) P = x^2 + x - 3 = 0
<=> x . x + x - 3 = 0
<=> x . (x - 3) = 0
TH1: x = 0
TH 2: x - 3 = 0
=> x = 3
Có:
\(f\left(x_1\right)=ax_1+b=0\)
\(f\left(x_2\right)=ax_2+b=0\)
\(\Rightarrow f\left(x_1\right)-f\left(x_2\right)=0-0\)
\(\Rightarrow a\left(x_1-x_2\right)=0\)
\(x_1\ne x_2\Rightarrow x_1-x_2\ne0\)
\(\Rightarrow a=0\)
\(\Rightarrow f\left(x_1\right)=0=0+b\Rightarrow b=0\)
Như vậy với mọi giá trị của x thì đa thức trên luôn bằng 0.
Vậy f(x) là đa thức 0.
Đáp án D
Tập hợp các điểm thỏa mãn yêu cầu bài toán là khối hộp chữ nhật với các kích thước là x , y , z = 3 , 6 , 4 .
Tâm đối xứng I của khổi hộp chính là giao điểm của ba mặt phẳng trung trực tương ứng với 3 cạnh xuất phát từ một đỉnh của khối hộp. Do đó I 0 + 3 2 ; − 1 + 5 2 ; − 2 + 2 2 = 3 2 ; 2 ; 0 .
m