Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(H\left(-1\right)=K\left(2\right)\Rightarrow-1+3m+m^2=4+2\left(3m+2\right)+m^2\)
\(\Leftrightarrow-1+3m=8+6m\Leftrightarrow3m=-9\Leftrightarrow m=-3\)
Câu 2:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot0+b=2\\a\cdot\left(-1\right)+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2\\-a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2\\a=b-3=2-3=-1\end{matrix}\right.\)
Tìm m để đa thức f(x) = (m -1)x2 – 3mx + 2 có một nghiệm x = 1.
Đa thức f(x) có nghiệm là 1
\(\Rightarrow f\left(1\right)=0\)
\(\Leftrightarrow f\left(1\right)=\left(m-1\right).1.2-3m.1+2\)
\(\Leftrightarrow\left(m-1\right)2-3m+2=0\)
\(\Leftrightarrow2m-2-3m+2=0\)
\(\Leftrightarrow-m=0\)
\(\Leftrightarrow m=0\)
Vậy \(m=0\) thì đa thức \(f\left(x\right)\) có một nghiệm là 1
Ta có
P ( x ) = 2 x 3 − 3 x + x 5 − 4 x 3 + 4 x − x 5 + x 2 − 2 = x 5 − x 5 + 2 x 3 − 4 x 3 + x 2 + ( 4 x − 3 x ) − 2 = − 2 x 3 + x 2 + x − 2 Và Q ( x ) = x 3 − 2 x 2 + 3 x + 1 + 2 x 2 = x 3 + − 2 x 2 + 2 x 2 + 3 x + 1 = x 3 + 3 x + 1
Khi đó
M ( x ) = P ( x ) + Q ( x ) = − 2 x 3 + x 2 + x − 2 + x 3 + 3 x + 1 = − 2 x 3 + x 2 + x − 2 + x 3 + 3 x + 1 = − 2 x 3 + x 3 + x 2 + ( x + 3 x ) − 2 + 1 = − x 3 + x 2 + 4 x − 1
Bậc của M ( x ) = - x 3 + x 2 + 4 x - 1 l à 3
Chọn đáp án C
Bài 2:
a: \(\left(x-8\right)\left(x^3+8\right)=0\)
=>\(\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b: \(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
=>\(4x-3-x-5=30-3x\)
=>3x-8=30-3x
=>6x=38
=>\(x=\dfrac{38}{6}=\dfrac{19}{3}\)
Bài 6:
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
b: Ta có: HB=HC
H nằm giữa B và C
Do đó: H là trung điểm của BC
=>\(HB=HC=\dfrac{8}{2}=4\left(cm\right)\)
ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=5^2-4^2=9\)
=>\(AH=\sqrt{9}=3\left(cm\right)\)
c: Ta có: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
=>HD=HE
=>ΔHDE cân tại H
d: Ta có: HD=HE
HE<HC(ΔHEC vuông tại E)
Do đó:HD<HC
a, \(M+N=2x^2+x^2-2xy-2xy-3y^2+3y^2+1-1=3x^2-4xy\)
\(M-N=2x^2-x^2-2xy+2xy-3y^2-3y^2+1+1=x^2-6y^2+2\)
b, \(P\left(x\right)+Q\left(x\right)=x^3-4x^3+2x^2-6x+x+2-5=-3x^3+2x^2-5x-3\)
\(P\left(x\right)-Q\left(x\right)=x^3+4x^3-2x^2-6x-x+2+5=5x^3-2x^2-7x+7\)
-thay x=-1 vào đa thức (1) trên ta có:P(-1)=-1+3+m^2 (1)
-thay x=2 vào đa thức (2) ta có:Q(2)=4+6m+4+m^2
=8+6m +m^2(2)
Từ (1) và (2) =>1+3+m^2=8+6m+m^2
=>1+3m=8+6m
=>-7=3m
=>m=-7/3
\(P\left(-1\right)=\left(-1\right)^3-3m\times\left(-1\right)+\left(-1\right)^2=\left(-1\right)+3m+1=3m\)
\(Q\left(2\right)=2^2+\left(3m+2\right)\times2+2^2=4+6m+4+4=6m+12\)
Ta có \(3m=6m+12\)
\(\Rightarrow3m-6m=12\)
\(-3m=12\)
\(m=12\div\left(-3\right)=-4\)
Vậy m = -4