Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P\left(x\right)⋮Q\left(x\right)\Leftrightarrow P\left(x\right)=Q\left(x\right).R\left(x\right)\) với \(R\left(x\right)\) là đa thức thương của phép chia P(x) cho Q(x)
\(\Rightarrow x^3+ax+b=\left(x^2-3x+2\right).R\left(x\right)\) (1)
Thay \(x=1\) vào (1) ta được: \(a+b+1=0\)
Thay \(x=2\) vào (1) ta được: \(2a+b+8=0\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+1=0\\2a+b+8=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-7\\b=6\end{matrix}\right.\)
Lời giải:
\(Q(x)=x^2+2x-3=(x-1)(x+3)\)
Do đó để $P(x)\vdots Q(x)$ thì \(\left\{\begin{matrix} P(x)\vdots x-1\\ P(x)\vdots x+3\end{matrix}\right., \forall x\in\mathbb{R}(*)\)
Theo định lý Bê-du về phép chia đa thức $(*)$ xảy ra khi:
\(\left\{\begin{matrix} P(1)=0\\ P(-3)=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3+a+b=0\\ -9-3a+b=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=-3\\ b=0\end{matrix}\right.\)
Vậy......
â) viết lại biểu thức bên trái = (x2+5x-3)(x2-2x-4)+(14+a)x+b-12
Để là phép chia hết thì số dư =0
Số dư chính là (14+a)x+b-12=0 => a+14=0 và b-12=0 <=>a=-14 và b=12
b) làm tương tự phân tích vế trái thành (x3-2x2+4)(x2+9x+18)+(a+32)x2+(b-36)x
số dư là (a+32)x2+(b-36)x=0 =>a=-32 và b=36
c) Tương tự (x2-1)4x+(a+4)x+b
số dư là (a+4)x+b =2x-3 =>a+4=2 và b=-3 <=>a=-2 và b=-3
Đầu tiên ta chứng minh: \(\left|a\right|\le1,\left|b\right|\le1,\left|c\right|\le1\)Lời giải em tham khảo tại đây http://olm.vn/hoi-dap/question/709608.html.
Phần chứng minh |a|< 1 phải chọn c khéo chút xíu.
Do \(\left|f\left(x\right)\right|\ge7\) nên \(\left|4a+2b+c\right|\ge7\).
Mà \(\left|4a+2b+c\right|\le\left|4a\right|+\left|2b\right|+\left|c\right|\le7.\)
Dấu bằng xảy ra khi a = b = c = 1.
Bài 1 :
Gọi f( x ) = 2n2 + n - 7
g( x ) = n - 2
Cho g( x ) = 0
\(\Leftrightarrow\)n - 2 = 0
\(\Rightarrow\)n = 2
\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7
\(\Rightarrow\)f( 2 ) = 3
Để f( x ) \(⋮\)g( x )
\(\Rightarrow\)n - 2 \(\in\)Ư( 3 ) = { \(\pm\)1 ; \(\pm\)3 }
Ta lập bảng :
n - 2 | 1 | - 1 | 3 | - 3 |
n | 3 | 1 | 5 | - 1 |
Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }
Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )
Khi đó ta có pt :
\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)
\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)
Vì pt trên đúng với mọi x nên :
+) đặt \(x=1\)
\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)
\(\Leftrightarrow-7+a+b+c=0\)
\(\Leftrightarrow a+b+c=7\)(1)
Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :
\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)
Từ (1) và (2) ta có hệ pt 3 ẩn :
\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)
Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)
Vậy....
Qx=x^2-x-2x+2=x(x-1) - 2(x-1)
=(x-1)(x-2) => Qx nhận x=1 và x=2 là nghiệm
theo định lý bowzu, để Px chia hết cho Qx thì P(1)=0 và P(2)=0
P(1)=1+a+b=0 =>a+b=-1 =>a=-1-b
P(2)=8+2a+b=0 => 2a+b=-8 => 2(-1-b) +b=-8
=>b-2-2b = -8
<=>-b=-6
<=>b=6
=>a = -1+6=5
vậy a=5, b=6