\(p\left(x\right)=5x^3-3x+7-x\)

              va 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2015

a) ta có p(x)=5x3-3x+7-x

                  =5x3-(3x+x)+7

                 =  5x3-4x+7

ta có   q(x)=-5x3+2x-3+2x-x2-2

                =-5x3+(2x+2x)-(3+2)

               =-5x3+4x-5

b) ta có m(x)=5x3-4x+7-5x3+4x-5

                   =(5x3-5x3)-(4x-4x)+(7-5)

                    = 0          -    0     +2=2

n(x)=5x3-4x+7+5x3-4x+5

      =(5x3+5x3)-(4x+4x)+(7+5)

     =10x3-8x+12

c)Để m(x) có nghiệm thì tức là 2=0 =>điều này vô lí, nên m(x)vô nghiệm

   

20 tháng 4 2018

huuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

23 tháng 4 2019

Q(x)=-5x3 +4x-x2-5

b.x-2

c.x=-2

23 tháng 4 2019

a. ta có : \(P\left(x\right)=5x^3+x^2-3x+7\)

\(Q\left(x\right)=-5x^3-x^2+4x-5\)

b. ta có \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=5x^3+x^2-3x+7-5x^3-x^2+4x-5\)

\(=x+2\)

c. cho M(x)=0 \(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

vậy x=-2 là nghiệm của đa thức M(x)

tick mk với

24 tháng 6 2021

a, Ta có : \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=5x^3-4x+7-5x^3-x^2+4x-5\)

\(=-x^2+2\)

\(N\left(x\right)=P\left(x\right)-Q\left(x\right)=5x^3-4x+7+5x^3+x^2-4x+5\)

\(=10x^3+x^2-8x+12\)

b, Đặt \(M\left(x\right)+2=0\Rightarrow-x^2+2+2=0\Leftrightarrow4-x^2=0\)

\(\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)

Vậy tập nghiệm đa thức trên là S = { -2 ; 2 } 

17 tháng 4 2017

a, h(x)=-4x+8

b, Tìm nghiệm của h(x) thì

h(x)=-4x+8=0\(\Rightarrow\)-4x=-8\(\Rightarrow\)x=2

17 tháng 4 2017

H(x) = ( 3x^3 - x^3 - x^3 ) + ( 5x^2 - 5x^2 ) + ( - 5x + x ) + 8

= -4x + 8

N : -4x + 8 = 0

-4x = -8

x= 2

6 tháng 4 2017

a,

C(x)=-3x^4-2x^3+x^2+x+5

4 tháng 4 2017

a) \(A=\)\(x^4\)\(+4x^3\)\(+2x^2\)\(+x\)\(-7\)

  \(B=\)\(2x^4\)\(-4x^3\)\(-2x^2\)\(-5x\)\(+3\)

b) f(x)= A(x)+B(x)= \(3x^4-4x\)\(-4\)

    g(x)=A(x)-B(x) =  \(-x^4+8x^3+4x^2+6x\)\(-10\)

c) g(x)= \(0^4+8.0^3+4.0^2\)\(+6.0\)\(-10\)

         = -10

   g(-2)=\(-2^4+8.-2^3+4.-2^2+6.-2\)\(-10\)

         =\(-54\)

4 tháng 5 2019

a) A(x) = \(x^2-5x^3+3x+\)\(2x^3\)\(x^2+\left(-5x^3+2x^3\right)+3x\)=\(x^2-3x^3+3x\)

=\(-3x^3+x^2+3x\)

B(x)= \(-x^2+7+3x^3-x-5\)\(-x^2+2+3x^3-x\)

=\(3x^3-x^2-x+2\)

b) A(x) - B(x) = \(-3x^3+x^2+3x\)\(3x^3+x^2+x-2\)

=\(\left(-3x^3-3x^3\right)+\left(x^2+x^2\right)+\left(3x+x\right)-2\)\(-6x^3+2x^2+4x-2\)

vậy A(x) - B(x) =\(-6x^3+2x^2+4x-2\)

c) C(x) = A(x) + B(x) =\(-3x^3+x^2+3x\)\(3x^3-x^2-x+2\)= 2x+2

ta có: C(x) = 0 <=> 2x+2=0

      => 2x=-2

=> x=-1

vậy x=-1 là nghiệm của đa thức C(x)

4 tháng 5 2019

a) A(x)= -3x^3 + x^2 + 3x

B(x)= 3x^3 - x^2 - x +2

b) A(x) - B(x) = - 3x^3 + x^2 + 3x - (3x^3 - x^2 - x + 2)

= -3x^3 + x^2 + 3x - 3x^3 + x^2 + x - 2

= -6x^3 + 2x^2 + 4x -2 

c) C(x) = A(x) + B(x) = - 3x^3 + x^2 + 3x + 3x^3 - x^2 - x +2= 2x + 2

C(x) có nghiệm => C(x)=0 => 2x + 2 = 0 => 2x=-2 => x=-1

Vậy x=-1 là nghiệm của C(x)

14 tháng 4 2018

a) \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)

\(f\left(x\right)=2x^6+\left(4-1\right)x^4+\left(5-1-4\right)x^3+\left(3-2\right)x^2+1\)

\(f\left(x\right)=2x^6+3x^4+x^2+1\)

b) \(2.1+3.1+1+1=7\)

c) \(\left\{{}\begin{matrix}x^6\ge0\\x^4\ge0\\x^2\ge0\end{matrix}\right.\) \(\Leftrightarrow2x^6+3x^4+x^2\ge0\Rightarrow2x^6+3x^4+x^2+1\ge1\)

=> f(x) >=1 => dpcm