K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2022

Cho để làm gì bn?

12 tháng 5 2022

chết mình ghi thiếu ạ:))

12 tháng 5 2022

a, -Bậc =3

    -HS tự do = -5

    -HS cao nhất = 2

b, 2x3+x2+2x-5-(2x3-16)

=2x3+x2+2x-5-2x3+16

=(2x3-2x3)+x2+2x+(-5+16)

=x2+2x+11

c, 2.23-16

=2.8-16

=16-16

=0

=>2 là nghiệm của đa thức N(X)

31 tháng 7 2021

cộng 2 vế vào ta có: M(x)+N(x)+M(x)-N(x)=2x+4+6x

                                 ⇒ 2M(x)=8x+4

                                 ⇒M(x)=4x+2

M(x)+N(x)=2x+4

⇒4x+2+N(x)=2x+4

⇒N(x)=-2x-2

31 tháng 7 2021

24 tháng 2 2020

Lấy P(x) - Q(x) -2x^2 thì ra G(x) nhé 

24 tháng 2 2020

Thanks bạn

23 tháng 4 2020

a) Bậc P(x)  = 4 + 3 + 1 = 8 

Bậc của Q (x) = 2 + 3 + 1 = 6

b) P(x) + Q ( x) = x4 + x3 -2x + 1 + 2x2 -2x3 + x-  5 

                          = x4 -x3 + 2x2 -x - 4

  P(x) - Q (x)   = x4 +x3 -2x + 1 - 2x2 -2x3 + x - 5 

                        = x4 + 3x 3 -2x2 - 3x + 6

23 tháng 4 2020

a) Bậc của đa thức P(x) là: 4+3+1=8

    Bậc xủa đa thức Q(x) là: 2+3+1=6

b) P(x)+Q(x)=(x4+x3-2x+1)+(2x2-2x3+x-5)

    P(x)+Q(x)=x4+x3-2x+1+2x2-2x3+x-5

    P(x)+Q(x)=x4-x3+2x2-x-4

  

    P(x)-Q(x)=(x4+x3-2x+1)-(2x2-2x3+x-5)

    P(x)-Q(x)=x4+x3-2x+1-2x2+2x3-x+5

    P(x)-Q(x)=x4+3x3-2x2-3x+6

7 tháng 8 2019

a) f(x) = x(x - 5) + 2(x - 5)

x(x - 5) + 2(x - 5) = 0

<=> (x - 5)(x - 2) = 0

        x - 5 = 0 hoặc x - 2 = 0

        x = 0 + 5         x = 0 + 2

        x = 5               x = 2

=> x = 5 hoặc x = 2

a,   f(x) có nghiệm 

\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)

->tự kết luận.

b1, để g(x) có nghiệm thì:

\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)

\(\Rightarrow2x^2-4x-x^2+5+4x=0\)

\(\Rightarrow x^2+5=0\)

Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)

suy ra: k tồn tại \(x^2+5=0\)

Vậy:.....

b2, 

\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)

\(=x^2-5x+2x-10\)

\(=x^2-3x-10\)

\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)

\(=x^2+5-x^2+3x-10=3x-5\)

2:

a: A(x)=0

=>5x-10-2x-6=0

=>3x-16=0

=>x=16/3

b: B(x)=0

=>5x^2-125=0

=>x^2-25=0

=>x=5 hoặc x=-5

c: C(x)=0

=>2x^2-x-3=0

=>2x^2-3x+2x-3=0

=>(2x-3)(x+1)=0

=>x=3/2 hoặc x=-1