Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay x = \(\sqrt{2}\)vào biểu thức ta có :
\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)
Giá trị của A khi x = \(\sqrt{2}\)là 0
b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)
Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)
Giá trị của B khi x = 3 là 32
d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)
Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)
=> D = 8
e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)
Lại có x + y + z = 0
=> x + y = -z
=> x + z = - y
=> y + z = - x
Khi đó E = \(\frac{-xyz}{xyz}=-1\)
\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)
Hệ số \(\frac{-125}{27}\)
Biến : a8b2x16y7zn + 2
a) \(\frac{-2}{3}\)- 3x = 0,75 + 5x
3x + 5x = \(\frac{-2}{3}\)- 0,75
8x = \(\frac{-17}{12}\)
x = \(\frac{-17}{12}\): 8
x =\(\frac{-17}{96}\)
Vậy x = \(\frac{-17}{96}\)
b) \(\frac{11}{12}\)- (\(\frac{2}{5}\)+ x ) = \(\frac{2}{3}\)
\(\frac{2}{5}\)+ x = \(\frac{11}{12}\)-\(\frac{2}{3}\)
\(\frac{2}{5}\)+ x = \(\frac{1}{4}\)
x = \(\frac{1}{4}\)- \(\frac{2}{5}\)
x = \(\frac{-3}{20}\)
Vậy x = \(\frac{-3}{20}\)
a) \(x\ne+-\sqrt{2}\)
b) mọi giá trị của x đều có nghĩa vì \(x^2+1\ge1\)
c) \(xy-3y\ne0\Rightarrow y\left(x-3\right)\ne0\Rightarrow y\ne0;x\ne3\)
d) \(x\ne\frac{1}{2}\)
Mẫu khác 0 là được
a) để biểu thức a có nghĩa thì x^2-2 khác không
=>x^2 khác 2
=> x khác cộng trừ căn 2
Bài 1 :
\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)
Mà \(B=-\left(y^2-x\right)^2\)
Nên ta có : đpcm
Bài 2
Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)
TH1 : x = -1
TH2 : x = 2
TH3 : x = 1/2
Bài 4 :
a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)
b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)
c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)
d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)
Từ x-y=7
=>x=y+7
Thay x=y+7 vào B ta được:
\(B=\frac{3.\left(y+7\right)-7}{2.\left(y+7\right)+y}-\frac{3y+7}{2y+\left(y+7\right)}\)\(=\frac{3y+21-7}{2y+14+y}-\frac{3y+7}{3y+7}=\frac{3y+14}{3y+14}-\frac{3y+7}{3y+7}=1-1=0\)
Vậy B=0 khi x-y=7