Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có : \(2A+3B=0\) \(\Leftrightarrow2.\dfrac{5}{2m+1}+3.\dfrac{4}{2m-1}=0\)
\(\Leftrightarrow\dfrac{10}{2m+1}+\dfrac{12}{2m-1}=0\Leftrightarrow\dfrac{10\left(2m-1\right)+12\left(2m+1\right)}{\left(2m+1\right)\left(2m-1\right)}=0\)
\(\Leftrightarrow\dfrac{20m-10+24m+12}{4m^2-1}=0\Leftrightarrow\dfrac{44m+2}{4m^2-1}=0\)
\(\Leftrightarrow44m+2=0\Leftrightarrow44m=-2\Leftrightarrow m=\dfrac{-2}{44}=\dfrac{-1}{22}\) vậy \(m=\dfrac{-1}{22}\)
b) ta có : \(AB=\dfrac{5}{2m+1}.\dfrac{4}{2m-1}=\dfrac{5.4}{\left(2m+1\right)\left(2m-1\right)}\)
ta có : \(A+B=\dfrac{5}{2m+1}+\dfrac{4}{2m-1}=\dfrac{5\left(2m-1\right)+4\left(2m+1\right)}{\left(2m+1\right)\left(2m-1\right)}\)
\(\Rightarrow AB=A+B\Leftrightarrow\dfrac{5.4}{\left(2m+1\right)\left(2m-1\right)}=\dfrac{5\left(2m-1\right)+4\left(2m+1\right)}{\left(2m+1\right)\left(2m-1\right)}\)
\(\Leftrightarrow5.4=5\left(2m-1\right)+4\left(2m+1\right)\Leftrightarrow20=10m-5+8m+4\)
\(\Leftrightarrow20=18m-1\Leftrightarrow18m=20+1=21\Leftrightarrow m=\dfrac{21}{18}=\dfrac{7}{6}\) vậy \(m=\dfrac{7}{6}\)
bài 1:
a) 4n+4+3n-6<19
<=> 7n-2<19
<=> 7n<21 <=> n< 3
b) n\(^2\) - 6n + 9 - n\(^2\) + 16\(\leq\)43
-6n+25\(\leq\)43
-6n\(\leq\)18
n\(\geq\)-3
Bài 3:
\(\dfrac{a}{b}=\dfrac{3}{10}\)
=>3a=10b
=>\(a=\dfrac{10b}{3}\)
Do đó:\(B=\dfrac{4a\left(4a-10b\right)}{4a\left(2a-6b\right)}=\dfrac{a+3a-10b}{\dfrac{2.10b-18b}{3}}=\dfrac{a}{\dfrac{2}{3}b}=\dfrac{3a}{2b}\)
\(=\dfrac{\dfrac{3.10b}{3}}{2b}=\dfrac{10b}{2b}=5\)
bài 3 : a, cho \(3a^2+3b^2=10ab\) và b>a>0. tính gt biểu thức A= \(\dfrac{a-b}{a+b}\)
\(3a^2+3b^2=10ab\)
\(\Rightarrow3a^2-10ab+3b^2=0\)
\(\Rightarrow3a^2-9ab-ab+3b^2=0\)
\(\Rightarrow\left(3a^2-9ab\right)-\left(ab-3b^2\right)=0\)
\(\Rightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)
\(\Rightarrow\left(a-3b\right)\left(3a-b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a-3b=0\\3a-b=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=3b\left(loai\right)\\a=\dfrac{b}{3}\end{matrix}\right.\)
a= 3b loại vì b > a > 0
Thay \(a=\dfrac{b}{3}\) vào biểu thức A ,có :
\(\dfrac{\dfrac{b}{3}-b}{\dfrac{b}{3}+b}=\dfrac{\dfrac{b-3b}{3}}{\dfrac{b+3b}{3}}=\dfrac{b-3b}{3}.\dfrac{3}{b+3b}=\dfrac{-2b}{4b}=-\dfrac{1}{2}\)
Vậy A =-1/2
b, tương tự tìm a theo b rồi thay vào biểu thức
Nếu bn ko lm đc thì bảo mk nha
1: \(\Leftrightarrow\left(x+2\right)\left(x-2\right)+3\left(x+1\right)=3+x^2-x-2\)
\(\Leftrightarrow x^2-x+1=x^2-4+3x+3=x^2+3x-1\)
=>-4x=-2
hay x=1/2
2: \(\Leftrightarrow\left(x+6\right)^2+\left(x-5\right)^2=2x^2+23x+61\)
\(\Leftrightarrow x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
\(\Leftrightarrow2x^2+23x+61=2x^2+2x+11\)
=>21x=-50
hay x=-50/21
3: \(\Leftrightarrow6\left(x-8\right)+\left(x+2\right)\left(x-5\right)=-18-\left(x-5\right)\left(x-8\right)\)
\(\Leftrightarrow6x-48+x^2-3x-10+18+x^2-13x+40=0\)
\(\Leftrightarrow2x^2-10x=0\)
=>2x(x-5)=0
=>x=0(nhận) hoặc x=5(loại)
1)
\(\Leftrightarrow\left(x^2-2+\dfrac{1}{x^2}\right)+\left(y^2-2+\dfrac{1}{y^2}\right)+z^2=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2+z^2=0\)
\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\Rightarrow\left|x\right|=1\\y-\dfrac{1}{y}=0\Rightarrow\left|y\right|=1\\z=0\end{matrix}\right.\)
dk\(x,y,z,a,b,c\ne0\)\(\left\{{}\begin{matrix}\dfrac{a}{x}=A\\\dfrac{b}{y}=B\\\dfrac{c}{z}=C\end{matrix}\right.\) \(\Rightarrow A,B,C\ne0\)
\(\left\{{}\begin{matrix}A+B+C=2\\\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}A^2+B^2+C^2+2\left(AB+BC+AC\right)=4\\\dfrac{ABC}{A}+\dfrac{ABC}{B}+\dfrac{ABC}{C}=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}AB+BC+AC=0\\A^2+B^2+C^2=4\end{matrix}\right.\)
\(\left(\dfrac{a}{x}\right)^2+\left(\dfrac{b}{y}\right)^2+\left(\dfrac{c}{z}\right)^2=4\)
ta có : \(2A+3B=0\) \(\Leftrightarrow2.\dfrac{5}{2m+1}+3.\dfrac{4}{2m-1}=0\)
\(\Leftrightarrow\dfrac{10}{2m+1}+\dfrac{12}{2m-1}=0\Leftrightarrow\dfrac{10\left(2m-1\right)+12\left(2m+1\right)}{\left(2m-1\right)\left(2m+1\right)}=0\)
\(\Rightarrow10\left(2m-1\right)+12\left(2m+1\right)=0\Leftrightarrow20m-10+24m+12=0\)
\(\Leftrightarrow44m+2=0\Leftrightarrow44m=-2\Leftrightarrow m=\dfrac{-2}{44}=\dfrac{-1}{22}\) vậy \(m=\dfrac{-1}{22}\)
DƯƠNG PHAN KHÁNH DƯƠNG :
cái này cũng tương tự thôi
ta có : \(AB=\dfrac{5}{2m+1}.\dfrac{4}{2m-1}=\dfrac{5.4}{\left(2m+1\right)\left(2m-1\right)}\)
và \(A+B=\dfrac{5}{2m+1}+\dfrac{4}{2m-1}=\dfrac{5\left(2m-1\right)+4\left(2m+1\right)}{\left(2m+1\right)\left(2m-1\right)}\)
\(\Rightarrow AB=A+B\Leftrightarrow\dfrac{5.4}{\left(2m+1\right)\left(2m-1\right)}=\dfrac{5\left(2m-1\right)+4\left(2m+1\right)}{\left(2m+1\right)\left(2m-1\right)}\)
\(\Leftrightarrow5.4=5\left(2m-1\right)+4\left(2m+1\right)\Leftrightarrow20=10m-5+8m+4\)
\(\Leftrightarrow20=18m-1\Leftrightarrow18m=20+1=21\Leftrightarrow m=\dfrac{21}{18}=\dfrac{7}{6}\)
vậy \(m=\dfrac{7}{6}\)