K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2016

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow x^2y+y^2z+x^2z+y^2x+z^2y+z^2x+2xyz=0\)

\(\Leftrightarrow\left(x^2y+y^2x\right)+\left(x^2z+xyz\right)+\left(z^2x+z^2y\right)+\left(y^2z+xyz\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(xy+yz+xz+z^2\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(\left(xy+yz\right)+\left(xz+z^2\right)\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

Vậy 2 trong 3 số x,y,z có 2 số đối nhau

13 tháng 5 2018

        \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\)

\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)   (do x+y+z = 2015)

\(\Rightarrow\)\(\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)

\(\Rightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)

\(\Rightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)

\(\Rightarrow\)\(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

đến đây tự lm nốt nha

6 tháng 10 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{-x-y}{\left(x+y+z\right)z}\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{\left(x+y+z\right)z}\right)=0\)

\(+,x+y=0\Rightarrow x=-y\Rightarrow\text{đpcm}\)

\(+,\frac{1}{xy}+\frac{1}{\left(x+y+z\right)z}=0\Leftrightarrow\frac{xy+xz+yz+z^2}{xyz\left(x+y+z\right)}=0\Leftrightarrow\frac{x\left(y+z\right)+z\left(z+y\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\frac{\left(y+z\right)^2}{xyz\left(x+y+z\right)}=0\Rightarrow y+z=0\Rightarrow z=-y\Rightarrow\text{đpcm}\)

\(\text{Vậy ta có điều phải chứng minh }\)

16 tháng 12 2015

Từ  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Rightarrow\)  \(\frac{yz+xz+xy}{xyz}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\)  \(yz\left(x+y+z\right)+xz\left(x+y+z\right)+xy\left(x+y+z\right)=xyz\)

\(\Leftrightarrow\)  \(xyz+y^2z+yz^2+x^2z+xyz+xz^2+x^2y+xy^2+xyz-xyz=0\)

\(\Leftrightarrow\)  \(2xyz+y^2z+yz^2+x^2z+xz^2+x^2y+xy^2=0\)

\(\Leftrightarrow\)  \(x^2\left(y+z\right)+x\left(y^2+2yz+z^2\right)+yz\left(y+z\right)=0\)

\(\Leftrightarrow\)  \(\left(y+z\right)\left(x^2+xy+xz+yz\right)=0\)

\(\Leftrightarrow\)  \(\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow\)  \(x=-y\)  hoặc \(y=-z\)  hoặc  \(z=-x\)

Vậy,  trong ba số  x, y, z có hai số đối nhau

22 tháng 6 2017

\(x^2y-y^2x+x^2z-z^2x+y^2z+z^2y=2xyz\)\(\Leftrightarrow\left(x^2y-xy^2\right)+\left(x^2z-xyz\right)+\left(z^2y-z^2x\right)+\left(y^2z-xyz\right)=0\)\(\Leftrightarrow xy\left(x-y\right)+xz\left(x-y\right)-z^2\left(x-y\right)-yz\left(x-y\right)=0\)\(\Leftrightarrow\left(xy+xz-z^2-yz\right)\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[x\left(y+z\right)-z\left(y+z\right)\right]=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-z\right)\left(y+z\right)=0\Rightarrow\left[{}\begin{matrix}x-y=0\\x-z=0\\y+z=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=y\\x=z\\y=-z\end{matrix}\right.\Rightarrowđpcm\)

22 tháng 6 2017

\(x^2y-y^2x+x^2z-z^2x+y^2z+z^2y=2xyz\)

\(x^2y-y^2x+x^2z-z^2x+y^2z+z^2y-2xyz=0\)

\(\left(x^2y-y^2x\right)+\left(x^2z-xyz\right)+\left(z^2y-z^2x\right)=\left(y^2z-xyz\right)+\left(y^2z-xyz\right)=0\)

\(\left[\left(x-y\right)\left(xy\right)\right]+\left[\left(x-y\right)\left(zx\right)\right]+\left[\left(x-y\right)\left(-z^2\right)\right]+\left[\left(x-y\right)\left(-yz\right)\right]\)

\(\left(x-y\right)\left(xy+zx-z^2-yz\right)=\left(x-y\right)\left(x-z\right)\left(y+z\right)\)

đpcm