Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0}\)
Tương tự \(\left(b+1\right)\left(b-2\right)\le0,\left(c+1\right)\left(c-2\right)\le0\)
=> (a+1)(a-2)+(b+1)(b-2)+(c+1)(c-2)\(\le\)0 => a2+b2+c2-(a+b+c)-6\(\le\)0
=>a2+b2+c2 \(\le\)6
Dấu "=" xảy ra <=> (a+1)( a-2)=0, (b+1)(b-2)=0, (c+1)(c-2)=0 , a+b+c=0 <=> a=2, b=c=-1 và các hoán vị
Áp dụng BĐT cosi:
\(a\sqrt{1-b^2}=\sqrt{a^2\left(1-b^2\right)}\le\dfrac{a^2+1-b^2}{2}\)
Tương tự cx có: \(b\sqrt{1-c^2}\le\dfrac{b^2+1-c^2}{2}\)
\(c\sqrt{1-a^2}\le\dfrac{c^2+1-a^2}{2}\)
Cộng vế với vế \(\Rightarrow VT\le\dfrac{3}{2}\)
Dấu = xảy ra <=> \(\left\{{}\begin{matrix}a^2=1-b^2\\b^2=1-c^2\\c^2=1-a^2\end{matrix}\right.\) \(\Leftrightarrow a^2+b^2+c^2=3-\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2=\dfrac{3}{2}\) (đpcm)
Theo bài ra ta có \(0\le a\le b\le c\) nên b\(+\)c \(\ge\)2b
Do đó suy ra \(\frac{2a^2}{b+c}\le\frac{2a^2}{2b}\)suy ra \(\frac{2a^2}{b+c}\le\frac{a^2}{b}\)
Chưng minh tương tự có \(\frac{2b^2}{c+a}\le\frac{b^2}{c}\)và \(\frac{2c^2}{a+b}\le\frac{c^2}{a}\)
Cộng vế với vế của các bđt cùng chiều trên ta sẽ suy ra điều phải chứng minh
#nga
Sai rồi nếu như theo cách chứng minh của bạn thì ta có: a + c \(\ge2c\)cái này vô lý.
Do \(-1\le a;b;c\le1\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)+\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge0\)
\(\Leftrightarrow1-abc-a-b-c+ab+bc+ca+1+abc+b+c+c+ab+bc+ca\ge0\)
\(\Leftrightarrow2\left(ab+bc+ca\right)+2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)+2\ge a^2+b^2+c^2\)
\(\Leftrightarrow\left(a+b+c\right)^2+2\ge a^2+b^2+c^2\)
\(\Leftrightarrow a^2+b^2+c^2\le2\)
Mà \(\left|a\right|;\left|b\right|;\left|c\right|\le1\Rightarrow\left\{{}\begin{matrix}a^4\le a^2\\b^6\le b^2\\c^8\le c^2\end{matrix}\right.\)
\(\Rightarrow a^4+b^6+c^8\le a^2+b^2+c^2\le2\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(-1;0;1\right)\) và các hoán vị
Lời giải tại link sau:
https://hoc24.vn/cau-hoi/cho-abc-la-cac-so-duongcmr-dfrac1a2bcdfrac1b2acdfrac1c2abledfracabc2abc.193908584039
Ta có: \(-1\le a,b,c\le2\Rightarrow a+1\ge0;a-2\le0\)
\(\Rightarrow\left(a+1\right)\left(a-2\right)\le0\)
\(\Leftrightarrow a^2-a-2\le0\Leftrightarrow a^2\le a+2\)
Tương tự:
\(b^2\le b+2\)
\(c^2\le c+2\)
Cộng vế theo vế, ta được:
\(a^2+b^2+c^2\le a+b+c+2+2+2=6\)
Vậy ta có đpcm
@Ace Legona,@Akai Haruma giúp mình