K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2017

Ta có: \(-1\le a,b,c\le2\Rightarrow a+1\ge0;a-2\le0\)

\(\Rightarrow\left(a+1\right)\left(a-2\right)\le0\)

\(\Leftrightarrow a^2-a-2\le0\Leftrightarrow a^2\le a+2\)

Tương tự:

\(b^2\le b+2\)

\(c^2\le c+2\)

Cộng vế theo vế, ta được:

\(a^2+b^2+c^2\le a+b+c+2+2+2=6\)

Vậy ta có đpcm

4 tháng 10 2017

@Ace Legona,@Akai Haruma giúp mình

11 tháng 11 2018

\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0}\)

Tương tự \(\left(b+1\right)\left(b-2\right)\le0,\left(c+1\right)\left(c-2\right)\le0\)

=> (a+1)(a-2)+(b+1)(b-2)+(c+1)(c-2)\(\le\)0 => a2+b2+c2-(a+b+c)-6\(\le\)

=>a2+b2+c2 \(\le\)

Dấu "=" xảy ra <=> (a+1)(  a-2)=0, (b+1)(b-2)=0, (c+1)(c-2)=0 , a+b+c=0 <=> a=2, b=c=-1 và các hoán vị 

25 tháng 5 2021

Áp dụng BĐT cosi:

\(a\sqrt{1-b^2}=\sqrt{a^2\left(1-b^2\right)}\le\dfrac{a^2+1-b^2}{2}\)

Tương tự cx có: \(b\sqrt{1-c^2}\le\dfrac{b^2+1-c^2}{2}\)

\(c\sqrt{1-a^2}\le\dfrac{c^2+1-a^2}{2}\)

Cộng vế với vế \(\Rightarrow VT\le\dfrac{3}{2}\)

Dấu = xảy ra <=> \(\left\{{}\begin{matrix}a^2=1-b^2\\b^2=1-c^2\\c^2=1-a^2\end{matrix}\right.\) \(\Leftrightarrow a^2+b^2+c^2=3-\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2=\dfrac{3}{2}\) (đpcm)

3 tháng 4 2020
https://i.imgur.com/Wcp0BsB.png
4 tháng 12 2016

Theo bài ra ta có \(0\le a\le b\le c\) nên b\(+\)\(\ge\)2b

Do đó suy ra \(\frac{2a^2}{b+c}\le\frac{2a^2}{2b}\)suy ra \(\frac{2a^2}{b+c}\le\frac{a^2}{b}\)

Chưng minh tương tự có \(\frac{2b^2}{c+a}\le\frac{b^2}{c}\)và \(\frac{2c^2}{a+b}\le\frac{c^2}{a}\)

Cộng vế với vế của các bđt cùng chiều trên ta sẽ suy ra điều phải chứng minh

#nga

4 tháng 12 2016

Sai rồi nếu như theo cách chứng minh của bạn thì ta có: a + c \(\ge2c\)cái này vô lý. 

24 tháng 1 2016

toán GPT thì còn tạm đc

24 tháng 1 2016

sory vì em đang học lớp 6

15 tháng 2 2019

theo đề  \(-1\le a\le2\Leftrightarrow\left(a-2\right)\left(a+1\right)\le0\Leftrightarrow a^2-a-2\le0\)

tương tự

\(b^2-b-2\le0\)

\(c^2-c-2\le0\)

nên \(a^2-a-2+c^2-c-2+b^2-b-2\le0\)

\(a^2+c^2+b^2-6\le0\Leftrightarrow a^2+c^2+b^2\le6\)

NV
22 tháng 10 2019

Do \(-1\le a;b;c\le1\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)+\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge0\)

\(\Leftrightarrow1-abc-a-b-c+ab+bc+ca+1+abc+b+c+c+ab+bc+ca\ge0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)+2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)+2\ge a^2+b^2+c^2\)

\(\Leftrightarrow\left(a+b+c\right)^2+2\ge a^2+b^2+c^2\)

\(\Leftrightarrow a^2+b^2+c^2\le2\)

\(\left|a\right|;\left|b\right|;\left|c\right|\le1\Rightarrow\left\{{}\begin{matrix}a^4\le a^2\\b^6\le b^2\\c^8\le c^2\end{matrix}\right.\)

\(\Rightarrow a^4+b^6+c^8\le a^2+b^2+c^2\le2\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(-1;0;1\right)\) và các hoán vị

AH
Akai Haruma
Giáo viên
19 tháng 6 2021

Lời giải tại link sau:

https://hoc24.vn/cau-hoi/cho-abc-la-cac-so-duongcmr-dfrac1a2bcdfrac1b2acdfrac1c2abledfracabc2abc.193908584039