K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2016

\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)

dung hằng đẳng thức đẹp :\(x^3+y^3+z^3=3xyz\) với \(x+y+z=0\)

\(\Rightarrow xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\frac{3}{xyz}=3\)

8 tháng 12 2021

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\Rightarrow\frac{xy}{ab}=\frac{yz}{bc}=\frac{xz}{ac}=\frac{xy+yz+xz}{ab+bc+ac}.\)(1)

Ta có

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Leftrightarrow1=1+2\left(ab+bc+ac\right)\Rightarrow ab+bc+ac=0\) => (1) vô nghĩa bạn xem lại đề bài

12 tháng 5 2022

\(x,y,z\ne0\)

-Ta c/m: -Với \(a+b+c=0\) thì: \(a^3+b^3+c^3-3abc=0\)

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0.\left(a^2+b^2+c^2-ab-bc-ca\right)=0\left(đpcm\right)\)

-Quay lại bài toán:

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Rightarrow\dfrac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)

\(A=\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}=\dfrac{y^3z^3+z^3x^3+x^3y^3}{x^2y^2z^2}=\dfrac{y^3z^3+z^3x^3+x^3y^3-3x^2y^2z^2+3x^2y^2z^2}{x^2y^2z^2}=\dfrac{\left(xy+yz+zx\right)\left[x^2y^2+y^2z^2+z^2x^2-xyz\left(x+y+z\right)\right]}{x^2y^2z^2}+3=\dfrac{0.\left[x^2y^2+y^2z^2+z^2x^2-xyz\left(x+y+z\right)\right]}{x^2y^2z^2}+3=3\)

7 tháng 7 2019

ta có: \(x+y+z=a\Rightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=a^2\)

\(\Rightarrow b+2\left(xy+yz+xz\right)=a^2\Rightarrow xy+yz+xz=\frac{a^2-b}{2}\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{c}\Rightarrow\frac{xy+yz+xz}{xyz}=\frac{1}{c}\Rightarrow c\left(xy+yz+xz\right)=xyz\)

Ta có:\(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz\)

\(=a\left(b-\frac{a^2-b}{2}\right)+\frac{3c\left(a^2-b\right)}{2}\)

20 tháng 11 2017

Bạn ghi lại đề đi

20 tháng 11 2017

thế Ty+1/z=0 là sao